Anleitung - Manual

Pressure balance in compact design, model **LR-Cal LDW-HK**

Kolbenmanometer in Kompaktausführung, Modell **LR-Cal LDW-HK**

Deadweight Tester / Pressure balance in compact design **LR-Cal LDW-HK**
Copyright © DRUCK & TEMPERATUR Leitenberger GmbH, 2015.
Alle Rechte vorbehalten. All rights reserved.

All rights reserved. / Alle Rechte vorbehalten.
LR-Cal is a trademark of DRUCK & TEMPERATUR Leitenberger GmbH.
LR-Cal ist ein Markenzeichen der DRUCK & TEMPERATUR Leitenberger GmbH

Prior to starting any work, read the operating instructions!
Keep for later use!

Vor Beginn aller Arbeiten Betriebsanleitung lesen!
Zum späteren Gebrauch aufbewahren!
Contents

1.	General information	4
2.	Safety	6
2.1	Intended use	6
2.2	Personnel qualification	7
2.3	Personal protective equipment	7
2.4	Special hazards	8
2.5	Labelling, safety marks	10
3.	Specifications	11
4.	Design and function	20
4.1	Description	20
4.2	Scope of delivery	20
4.3	Base unit	20
4.4	Piston unit	22
4.5	Function	23
5.	Transport, packaging and storage	24
6.	Commissioning, operation	25
6.1	Unpacking the pressure balance	25
6.2	Environmental requirement	25
6.3	Assembly of base units	25
6.4	Assembly of piston unit	26
6.5	Assembly of the pressure balance	27
6.6	Procedure	28
6.7	Completion	31
6.8	MS Excel sheet for calculation of corrections	31
6.9	Temperature measurement of piston units	32
6.10	Cleaning gauges	32
7.	Maintenance, cleaning and recalibration	34
7.1	Periodic maintenance	34
7.2	Corrective maintenance	34
7.3	Cleaning	38
7.4	Recalibration	38
8.	Faults	41
9.	Return and disposal	43
10.	Accessories	44
	Appendix: EC Declaration of conformity for model LR-Cal LDW-HK	45

Manual Model LR-Cal LDW-HK 3
1. General information

The model LR-Cal LDW-HK pressure balance in compact design described in the operating instructions has been designed and manufactured using state-of-the-art technology. All components are subject to stringent quality and environmental criteria during production. Our management systems is certified to ISO 9001.

These operating instructions contain important information on handling the instrument. Working safely requires that all safety instructions and work instructions are observed.

Observe the relevant local accident prevention regulations and general safety regulations for the instrument’s range of use.

The operating instructions are part of the product and must be kept in the immediate vicinity of the instrument and readily accessible to skilled personnel at any time.

Skilled personnel must have carefully read and understood the operating instructions prior to beginning any work.

The manufacturer’s liability is void in the case of any damage caused by using the product contrary to its intended use, non-compliance with these operating instructions, assignment of insufficiently qualified skilled personnel or unauthorized modifications to the instrument.

The general terms and conditions contained in the sales documentation shall apply.

DRUCK & TEMPERATUR Leitenberger GmbH reserve the right to change the contents or form of these operating instructions at any time without prior notice having been given.

Subject to technical modifications.

Factory calibrations or DKD/DAkkS calibrations (pressure calibration with a mass set) are carried out in accordance with international standards.
1. General information

- Further information:

 DRUCK & TEMPERATUR Leitenberger GmbH
 - Internet address: www.LR-Cal.net
 - Relevant data sheet: LDW-HK
 - Application consultant: Tel.: (+49) 7121 90920-0
 - Fax: (+44) 7121 90920-99
 - E-mail: DT-Export@Leitenberger.de

Explanation of symbols

DANGER!
... indicates a directly dangerous situation resulting in serious injury or death, if not avoided.

WARNING!
... indicates a potentially dangerous situation that can result in serious injury or death, if not avoided.

CAUTION!
... indicates a potentially dangerous situation that can result in light injuries or damage to equipment or the environment, if not avoided.

Information
... points out useful tips, recommendations and information for efficient and trouble-free operation.
2. Safety

WARNING!
Before installation, commissioning and operation, ensure that the appropriate pressure balance has been selected in terms of measuring range, design and specific measuring conditions. Non-observance can result in serious injury and/or damage to the equipment.

Further important safety instructions can be found in the individual chapters of these operating instructions.

2.1 Intended use
Pressure balances are the most accurate instruments available on the market for the calibration of electronic or mechanical pressure measuring instruments. By direct measurement of the pressure as the quotient of force and area \(p = \frac{F}{A} \), pressure balances are approved as primary standards.

The core component of the LR-Cal LDW-HK is therefore a very precisely-manufactured piston-cylinder system, which is loaded with masses in order to generate the individual test points. The masses applied are proportional to the target pressure and this is achieved through graduated masses. A maximum pressure of 1,200 bar must not be exceeded.

The pressure is set via an integrated, finely-adjustable, precision dual area spindle pump. As soon as the measuring system reaches equilibrium, there is a balance of forces between the pressure and the mass load applied. Then the test item can be calibrated or adjustments can be carried out.

Due to its stand-alone operation (integrated pressure generation and the pure mechanical measuring principle), the model LR-Cal LDW-HK is ideal for on-site use for maintenance and service.

The instrument has been designed and built solely for the intended use described here, and may only be used accordingly.

The technical specifications contained in these operating instructions must be observed. Improper handling or operation of the instrument outside of its technical specifications requires the instrument to be taken out of service immediately and inspected by an authorised LEITENBERGER service engineer.
2. Safety

Handle mechanical precision measuring instruments with the required care (protect from humidity, impacts, strong magnetic fields, static electricity and extreme temperatures, do not insert any objects into the instrument or its openings).

If the instrument is transported from a cold into a warm environment, the formation of condensation may result in instrument malfunction. Before putting it back into operation, wait for the instrument temperature and the room temperature to equalise.

The manufacturer shall not be liable for claims of any type based on operation contrary to the intended use.

2.2 Personnel qualification

WARNING!
Risk of injury should qualification be insufficient!
Improper handling can result in considerable injury and damage to equipment.

- The activities described in these operating instructions may only be carried out by skilled personnel who have the qualifications described below.
- Keep unqualified personnel away from hazardous areas.

Skilled personnel
Skilled personnel are understood to be personnel who, based on their technical training, knowledge of measurement and control technology and on their experience and knowledge of country-specific regulations, current standards and directives, are capable of carrying out the work described and independently recognising potential hazards.

Special operating conditions require further appropriate knowledge, e.g. of aggressive media.

DRUCK & TEMPERATUR Leitenberger GmbH can provide dedicated training courses on the correct use of our products. Please contact your supplier for further details.

2.3 Personal protective equipment (P.P.E.)
The personal protective equipment is designed to protect the skilled personnel from hazards that could impair their safety or health during work. When carrying out the various tasks on and with the instrument, the skilled personnel must wear personal protective equipment.
2. Safety

Follow the instructions, displayed in the work area, regarding personal protective equipment!

GB The required personal protective equipment must be provided by the operating company.

![Safety goggles]

Wear safety goggles!
Protect eyes from lying particles and liquid splashes.

2.4 Special hazards

WARNING!
To ensure safe working on the instrument, the operating company must ensure
- that suitable first-aid equipment is available and aid is provided whenever required.
- that the operating personnel are regularly instructed in all topics regarding work safety, first aid and environmental protection and knows the operating instructions and, in particular, the safety instructions contained therein.

WARNING!
Residual media at the pressure balance can result in a risk to persons, the environment and the equipment. Take sufficient precautionary measures.

2.4.1 Mineral oils health and safety information

DRUCK & TEMPERATUR Leitenberger GmbH provide hydraulic mineral oil in 500 ml containers labelled "ISO VG 22" for use up to 4,000 bar in pressure balances. It is no more hazardous than other common lubricating oils.

It is the nature of the way in which this equipment is used, that there could be frequent and/or prolonged skin contact; in a few individuals this could give rise to skin irritation (Keratosis or Dermatitis). The use of an effective barrier cream and/or protective gloves will greatly reduce this possibility.
2. Safety

Description

<table>
<thead>
<tr>
<th>Description</th>
<th>GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed lash point</td>
<td>greater than 120 °C</td>
</tr>
<tr>
<td>Storage</td>
<td>not above 30 °C</td>
</tr>
<tr>
<td>Oral LD 50</td>
<td>15 g per kg body weight</td>
</tr>
<tr>
<td>Threshold limit value</td>
<td>5 mg/m³</td>
</tr>
<tr>
<td>Fire extinguishing media</td>
<td>CO₂/dry chemical foam or water fog</td>
</tr>
<tr>
<td>Spillage</td>
<td>Soak with absorbent clay or proprietary absorbent</td>
</tr>
<tr>
<td>Waste disposal</td>
<td>Burn or dump in approved area</td>
</tr>
</tbody>
</table>

Emergency treatment of acute effects

<table>
<thead>
<tr>
<th>Description</th>
<th>GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestion</td>
<td>Do not induce vomiting. Administer 250 ml milk or olive oil. The main hazard following accidental ingestion is aspiration of liquid into lungs.</td>
</tr>
<tr>
<td>Aspiration</td>
<td>Send to hospital immediately</td>
</tr>
<tr>
<td>Inhalation</td>
<td>Remove to fresh air, if nausea persists seek medical attention.</td>
</tr>
<tr>
<td>Eye contact</td>
<td>Wash with copious amounts of water for at least 10 minutes. If irritation results or persists, obtain medical advice.</td>
</tr>
<tr>
<td>Skin contact</td>
<td>Where skin rashes or other abnormalities occur as a result of prolonged or repeated contact, medical advice should be obtained as soon as possible.</td>
</tr>
</tbody>
</table>

2.4.2 Other liquids

For some very particular applications we supply specially constructed liquids. Copies of manufacturer’s data can be sent on request.

2.4.3 Lifting of weights

WARNING!

Care must be taken when lifting the weights onto the pressure balance. Each weight must be lifted individually and never attempt to lift stack of weights on or of the pressure balance.
2. Safety

2.5 Labelling, safety marks

Product label

Before mounting and commissioning the instrument, ensure you read the operating instructions!

CE, Communauté Européenne
Instruments bearing this mark comply with the relevant European directives.
3. Specifications

Piston-cylinder systems

<table>
<thead>
<tr>
<th>Measuring range 1)</th>
<th>bar</th>
<th>1 ... 120</th>
<th>2.5 ... 300</th>
<th>5 ... 700</th>
<th>10 ... 1,200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required masses</td>
<td>kg</td>
<td>41</td>
<td>50</td>
<td>58</td>
<td>50</td>
</tr>
<tr>
<td>Smallest step 2)</td>
<td>(Standard mass set)</td>
<td>bar</td>
<td>1</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>Nominal cross-sectional area of the piston</td>
<td>in²</td>
<td>1/16</td>
<td>1/40</td>
<td>1/80</td>
<td>1/160</td>
</tr>
<tr>
<td>Measuring range 1)</td>
<td>psi</td>
<td>10 ... 1,600</td>
<td>25 ... 4,000</td>
<td>50 ... 10,000</td>
<td>100 ... 16,000</td>
</tr>
<tr>
<td>Required masses</td>
<td>kg</td>
<td>38</td>
<td>47</td>
<td>58</td>
<td>47</td>
</tr>
<tr>
<td>Smallest step 2)</td>
<td>(Standard mass set)</td>
<td>psi</td>
<td>10</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Nominal cross-sectional area of the piston</td>
<td>in²</td>
<td>1/16</td>
<td>1/40</td>
<td>1/80</td>
<td>1/160</td>
</tr>
</tbody>
</table>

Accuracies

<table>
<thead>
<tr>
<th>Standard 3) 4)</th>
<th>0.05 % of reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 3) 4)</td>
<td>0.025 % of reading</td>
</tr>
</tbody>
</table>

Pressure transmission medium

Hydraulic fluid based on VG22 mineral oil (0.5 l included in scope of delivery)

Material

<table>
<thead>
<tr>
<th>Piston</th>
<th>Tungsten carbide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder</td>
<td>Tungsten carbide</td>
</tr>
<tr>
<td>Mass set</td>
<td>Stainless steel, non-magnetic</td>
</tr>
</tbody>
</table>

Weight

<table>
<thead>
<tr>
<th>Piston-cylinder system</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAR mass set incl. overhang (bell jar)</td>
<td>2.4</td>
</tr>
<tr>
<td>PSI mass set incl. overhang (bell jar)</td>
<td></td>
</tr>
<tr>
<td>Carrying case for mass set (optional, 2 pieces required)</td>
<td>kg</td>
</tr>
<tr>
<td>Carrying case for mass set (optional)</td>
<td>W 430 x H 310 x D 310 mm and W 215 x H 310 x D 310 mm</td>
</tr>
</tbody>
</table>

1) Theoretical starting value; corresponds to the pressure value generated by the piston or the piston and its make-up weights (by their own weight). To optimise the operating characteristics more weights should be loaded.

2) The smallest pressure change value that can be achieved based on the standard weight set. To reduce this, a set of trim masses is also available.

3) The accuracy from 10 % of the measuring range is based on the measured value. In the lower range, a fixed error based on 10 % of the range applies.

4) Measurement uncertainty assuming reference conditions (ambient temperature 20 °C, air pressure 1,013 mbar, relative humidity 40%). Corrections must be made if required.

Manual Model LR-Cal LDW-HK
3. Specifications

Base

<table>
<thead>
<tr>
<th>Connections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection for piston-cylinder system</td>
<td>G ¾ B (male)</td>
</tr>
<tr>
<td>Test item connection</td>
<td>G ¼ female thread, loose union connection, incl. adapter set to G ½ and G ¾ female threads</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetted parts</td>
<td>Austenitic stainless steel, high tensile brass, nitrile rubber</td>
</tr>
<tr>
<td>Pressure transmission medium</td>
<td>Hydraulic fluid based on VG22 mineral oil (0.5 l included in scope of delivery)</td>
</tr>
<tr>
<td>Reservoir</td>
<td>170 cm³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>13.5 kg</td>
</tr>
<tr>
<td>Storage case for the base (optional)</td>
<td>8.5 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permissible ambient conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>18 ... 28 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>401 x 397 x 155 mm (W x D x H), for details, see technical drawings</td>
</tr>
</tbody>
</table>

Approvals and certificates

<table>
<thead>
<tr>
<th>CE conformity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure equipment directive</td>
<td>97/23/EC (Module A)</td>
</tr>
<tr>
<td>Certificate</td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td>Calibration certificate</td>
</tr>
<tr>
<td>Option: DKD/DAkkS calibration certificate (pressure calibration with a mass set)</td>
<td></td>
</tr>
</tbody>
</table>

For further specifications see the order documentation and datasheet.
3. Specifications

Tables of masses

The following tables show, for the respective measuring range, the number of masses within a mass set, with their resulting nominal pressures.

Should the instrument not be operated under reference conditions (ambient temperature 20 °C, air pressure 1,013 mbar, relative humidity 40 %), relevant corrections must be made.

The masses are manufactured, as standard, to standard gravity of 9.80665 m/s². As an optional extra, mass sets can be manufactured for customer local gravity value.

<table>
<thead>
<tr>
<th>Measuring range [bar]</th>
<th>1 ... 120 Quantity Nominal pressure per piece [bar]</th>
<th>2.5 ... 300 Quantity Nominal pressure per piece [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Piston and make-up weight</td>
<td>Piston and make-up weight</td>
</tr>
<tr>
<td></td>
<td>1 1</td>
<td>1 2.5</td>
</tr>
<tr>
<td></td>
<td>Piston, overhang (bell jar) and overhang make-up weight</td>
<td>Piston, overhang (bell jar) and overhang make-up weight</td>
</tr>
<tr>
<td></td>
<td>1 20</td>
<td>1 50</td>
</tr>
<tr>
<td></td>
<td>Masses (stackable on overhang (bell jar))</td>
<td>Masses (stackable on overhang (bell jar))</td>
</tr>
<tr>
<td></td>
<td>3 20</td>
<td>3 50</td>
</tr>
<tr>
<td></td>
<td>Masses (stackable on piston)</td>
<td>Masses (stackable on piston)</td>
</tr>
<tr>
<td></td>
<td>1 20</td>
<td>1 50</td>
</tr>
<tr>
<td></td>
<td>1 10</td>
<td>1 25</td>
</tr>
<tr>
<td></td>
<td>2 4</td>
<td>2 10</td>
</tr>
<tr>
<td></td>
<td>1 2</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>1 1</td>
<td>1 2.5</td>
</tr>
<tr>
<td>Measuring range [bar]</td>
<td>5 ... 700 Quantity Nominal pressure per piece [bar]</td>
<td>10 ... 1200 Quantity Nominal pressure per piece [bar]</td>
</tr>
<tr>
<td></td>
<td>Piston and make-up weight</td>
<td>Piston and make-up weight</td>
</tr>
<tr>
<td></td>
<td>1 5</td>
<td>1 10</td>
</tr>
<tr>
<td></td>
<td>Piston, overhang (bell jar) and overhang make-up weight</td>
<td>Piston, overhang (bell jar) and overhang make-up weight</td>
</tr>
<tr>
<td></td>
<td>1 100</td>
<td>1 200</td>
</tr>
<tr>
<td></td>
<td>Masses (stackable on overhang (bell jar))</td>
<td>Masses (stackable on overhang (bell jar))</td>
</tr>
<tr>
<td></td>
<td>4 100</td>
<td>3 200</td>
</tr>
<tr>
<td></td>
<td>Masses (stackable on piston)</td>
<td>Masses (stackable on piston)</td>
</tr>
<tr>
<td></td>
<td>1 100</td>
<td>1 200</td>
</tr>
<tr>
<td></td>
<td>1 50</td>
<td>1 100</td>
</tr>
<tr>
<td></td>
<td>2 20</td>
<td>2 40</td>
</tr>
<tr>
<td></td>
<td>1 10</td>
<td>1 20</td>
</tr>
<tr>
<td></td>
<td>1 5</td>
<td>1 10</td>
</tr>
</tbody>
</table>
3. Specifications

Measuring range [psi]

<table>
<thead>
<tr>
<th></th>
<th>10 ... 1,600</th>
<th></th>
<th>25 ... 4,000</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quantity</td>
<td>Nominal pressure per piece [psi]</td>
<td>Quantity</td>
<td>Nominal pressure per piece [psi]</td>
</tr>
<tr>
<td>Piston</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Overhang (bell jar) and overhang make-up weight</td>
<td>1</td>
<td>190</td>
<td>1</td>
<td>475</td>
</tr>
<tr>
<td>Masses (stackable on overhang (bell jar))</td>
<td>5</td>
<td>200</td>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td>Masses (stackable on piston)</td>
<td>1</td>
<td>200</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>40</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

Measuring range [psi]

<table>
<thead>
<tr>
<th></th>
<th>50 ... 10,000</th>
<th></th>
<th>100 ... 16,000</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quantity</td>
<td>Nominal pressure per piece [psi]</td>
<td>Quantity</td>
<td>Nominal pressure per piece [psi]</td>
</tr>
<tr>
<td>Piston</td>
<td>1</td>
<td>50</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Overhang (bell jar) and overhang make-up weight</td>
<td>1</td>
<td>950</td>
<td>1</td>
<td>1,900</td>
</tr>
<tr>
<td>Masses (stackable on overhang (bell jar))</td>
<td>7</td>
<td>1,000</td>
<td>5</td>
<td>2,000</td>
</tr>
<tr>
<td>Masses (stackable on piston)</td>
<td>1</td>
<td>1,000</td>
<td>1</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>500</td>
<td>1</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>200</td>
<td>2</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>50</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>
3. Specifications

Transport dimensions for complete instrument

The complete instrument, in its standard version and standard scope of delivery, consists of three packages on a single pallet. The dimensions are 1,200 x 800 x 500 mm.

<table>
<thead>
<tr>
<th>Version</th>
<th>Weight in kg</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>net</td>
<td>gross</td>
<td></td>
</tr>
<tr>
<td>1 ... 120 bar</td>
<td>71</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>2.5 ... 300 bar</td>
<td>71</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>5 ... 700 bar</td>
<td>71</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>10 ... 1,200 bar</td>
<td>71</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>10 ... 1,600 psi</td>
<td>68</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>25 ... 4,000 psi</td>
<td>68</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>50 ... 10,000 psi</td>
<td>68</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>100 ... 16,000 psi</td>
<td>68</td>
<td>86</td>
<td></td>
</tr>
</tbody>
</table>
3. Specifications

Dimensions in mm
(without masses)

Front view

Side view
3. Specifications

Top view

(1) Test item connection
(2) High-pressure shut-off valve
(3) Low-pressure shut-off valve
(4) Dual-area spindle pump with star handle
(5) Piston-cylinder system
(6) Rotatable feet
(7) Reservoir with screwed sealing plug
(8) Pressure generation control schematic
3. Specifications

Standard connection piston-cylinder system

- Oil collecting tray
- O-ring 8.9 x 1.9

Test item connection

- Adapter, see scope of delivery
- Sealing ring USIT 10.7 x 18 x 1.5
- Oil collecting tray
3. Specifications

Liquids used
A hydraulic mineral oil viscosity 20 ... 37 cSt at 40 °C viscosity grade VG20 to VG37 to ISO 3448 (BS 4231) is used for the LR-Cal LDW-HK base unit. Most users will be able to obtain locally suitable oil (see below) as used in hydraulic machinery. However, for the convenience of users we can supply a 500 ml bottle of oil, viscosity grade VG22.

Oils suitable for pressure balances
The following oils are the commercially available oils suitable for use in the pressure balance.

<table>
<thead>
<tr>
<th>ISO 3448 viscosity grade</th>
<th>Approx. SAE viscosity classification</th>
<th>Shell</th>
<th>Esso</th>
<th>Mobil</th>
</tr>
</thead>
<tbody>
<tr>
<td>VG22</td>
<td></td>
<td>Tellus 22</td>
<td>Nuto H22</td>
<td>DTE 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tellus R22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VG32</td>
<td>10W</td>
<td>Tellus V32</td>
<td>Nuto H32</td>
<td>DTE Oil Light</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DTE 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VG37</td>
<td></td>
<td>Tellus 37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tellus R37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tellus T37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tellus V37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other liquids
The deadweight tester model LR-Cal LDW-HK is manufactured for use on mineral oil only. If an end user wishes to use it on another fluid, it is the end user responsibility to ensure that the fluid is compatible with high tensile brass, stainless steel, mild steel, and nitrile rubber, which are the materials that will come into contact with the fluid.

Fluids, which attack ABS, should be used with caution. Continual immersion of the cover in such fluids will cause deterioration. Spillages should be wiped of immediately.

Wear safety goggles!
Protect eyes from flying particles and liquid splashes.
4. Design and function

4.1 Description
The model LR-Cal LDW-HK deadweight tester in compact design provides optimum features for laboratory use whilst being rugged enough for industrial requirements. It provides a highly accurate measurement of pressure. The piston unit is screwed on to the left hand side pressure block of the base unit and the test item is connected to the right hand pressure block.

4.2 Scope of delivery
- Instrument base
- Dual-area spindle pump for filling, pressure generation and fine adjustment
- Piston connection with G ¾ B male thread
- Test item connection with G ½ female thread, loose union connection
- Adapter set for test item connection, G ¾ B male to G ¼ and G ½ female threads
- Piston-cylinder system with overhang (bell jar)
- Mass set manufactured to standard gravity (9.80665 m/s²)
- VG22 mineral oil (0.5 litre)
- Tool and maintenance set
- Operating instructions in German and English language
- Factory calibration certificate

Cross-check scope of delivery with delivery note.

4.3 Base unit
The model LR-Cal LDW-HK series base unit consists of a solid aluminium base plate mounted on four adjustable levelling feet, a screw pump, reservoir, control valves, pipework to two stainless steel pressure connection blocks. The pipework and above mentioned assemblies are covered by an easy to clean ABS cover.

4.3.1 Screw pump
The screw pump is bolted to the reservoir/high pressure cylinder block fastened to the base unit. A sectioned view of the pump is shown. The rotating handwheel (C) which is operated by the spokes (D) is attached to a threaded spindle (E). The spindle is supported in a sintered bearing (F). As the spindle (E) is rotated, it drives a non-rotating ram (E and K) forward, the thrust being taken by a needle thrust bearing (G). The large diameter of the ram (H) in the barrel of the pump (I) primes the pressure system and provides the low pressure up to approximately 140 bar (2,000 psi). The small diameter of the ram (K) in the reservoir/ high pressure cylinder block provides the higher test pressures up to 1,200 bar (16,000 psi).
4. Design and function

Sectioned view of screw pump
4. Design and function

4.3.2 Reservoir
A liquid reservoir is provided on the top of reservoir/high pressure cylinder block. The reservoir is provided with a translucent cover to enable the reservoir level to be monitored. A plug in the middle of the reservoir cover to allow the reservoir to be filled or topped up (the plug is removed whilst the pressure balance is in use). The reservoir contains enough liquid (approximately 150 cm³) to enable normal operation of the pressure balance to be carried out.
Low pressure ram displacement = 60 cm³
High pressure ram displacement = 10 cm³

4.3.3 Control valves
Two control valves are provided on the top of reservoir/high pressure cylinder block. The valve mechanisms are built into the reservoir/high pressure cylinder block and they control the flow of liquid through internal drillings in the reservoir/high pressure cylinder block. The rear valve is referred to as valve A and is used to control the output from the larger diameter ram of the screw pump. The front valve is referred to as valve B and is used to control the flow of liquid to and from the reservoir.

4.3.4 Connection blocks
Pressure supply pipes from the screw pump are terminated at two pressure blocks mounted on the base unit. The pressure blocks are fitted with threaded bosses projecting up through the cover plate of the base unit. These threaded bosses enable piston units to be directly screwed on to them or connections for various sizes of gauge connections to be screwed on to them. Oil cups are fitted to the unit cover around the threaded bosses of the connection blocks to catch any oil drips from the gauge stand during gauge fitting and removal.

4.4 Piston unit
The piston unit of the model LR-Cal LDW-HK is a single range piston unit, which covers the range up to 1,200 bar (16,000 psi). Masses are loaded directly onto the piston head for low pressure calibration points. A coloured band indicates when the piston is floating.
For higher pressure points, an overhang is fitted directly to the piston head, and weights located at the bottom of the overhang or located on top of it. A machined groove on the main piston body indicates when the piston is floating.
4. Design and function

4.5 Function
Operation of the pressure balance is controlled by the two valves A and B on the top of the reservoir/high pressure cylinder block. When initially priming the system valves A and B are opened to fill the system with oil from the reservoir. Valve B is then closed with valve A left open and the screw pump operated to provide the lower test pressures. To provide the higher pressures valve A is closed to seal of the test circuit from the low pressure part of the screw pump and valve B is opened to allow the liquid in the low pressure part of the screw pump to return to the reservoir as the pump is operated. This ensures that the pump can be operated without having to put large forces on the screw pump handwheel. To release the test pressure the screw pump is wound out and valve A is opened.
5. Transport, packaging and storage

5.1 Transport
Check model LR-Cal LDW-HK deadweight tester / pressure balance for any damage that may have been caused by transport. Obvious damage must be reported immediately.

5.2 Packaging
Do not remove packaging until just before mounting. Keep the packaging as it will provide optimum protection during transport (e.g. change in installation site, sending for repair or recalibration).

Masses are shipped in cardboard and not in their respective wooden cases, if ordered. Wooden cases are not suitable for use as shipping cases.

5.3 Storage
Permissible conditions at the place of storage:
- Storage temperature: -10 ... +50 °C
- Humidity: 35 ... 85 % relative humidity for instrument base and mass set
 35 ... 65 % relative humidity for piston-cylinder unit (no condensation)

Avoid exposure to the following factors:
- Direct sunlight or proximity to hot objects
- Mechanical vibration, mechanical shock (putting it down hard)
- Soot, vapour, dust and corrosive gases
- Potentially explosive environments, ignitable atmospheres
- Corrosive liquids

Store the model LR-Cal LDW-HK pressure balance in its original packaging in a location that fulfils the conditions listed above. If the original packaging is not available, pack and store the instrument as described below:
1. Wrap the instrument in an antistatic plastic film.
2. Place the instrument, along with shock-absorbent material, in the packaging.
3. If stored for a prolonged period of time (more than 30 days), place a bag, containing a desiccant, inside the packaging.
6. Commissioning, operation

6.1 Unpacking the pressure balance
As soon as possible after delivery open the packaging of the system and check that you have all the items detailed in the packing list (see chapter 4.2 “Scope of delivery”). As you are unpacking the items, examine them for signs of damage or breakage during transit. If any items are missing get in touch immediately with your supplier to inform of the shortage.

6.2 Environmental requirement
When siting the pressure balance if not in a temperature controlled laboratory look for an area that satisfies the following criteria as much as possible:

- A constant temperature area free from draughts and sources of heat or cold
- An area free from noise and vibration, constantly used pathways
- A clean dry area free from corrosive liquids or vapours

A strong, stable, level table or workbench with the capability of supporting the system with sufficient space to operate is required.

6.3 Assembly of base units

Fastening base to bench
The base is to be mounted on a firm, level table or bench about 0.9 m high. The center line of the front adjustable feet of the unit should be about 40 mm from the front edge of the bench to allow adequate clearance for the handwheel.

1. Mark the position of the adjustable feet of the unit on the top of the bench.
2. Position a level plate at the centre of each of the adjustable feet of the unit and screw the plate to the bench to ensure that the pressure balance is rigid.
3. Fit the base unit on the bench with the adjustable feet on the level plates and the handwheel shaft projecting over the front of the bench.
4. Screw in the four handwheel spokes into the hub.
5. Using the spirit level provided, level the unit in both the front/rear axis and the side to side axis by adjusting the four knurled feet, by placing the spirit level on top of the piston-cylinder unit.
6. Commissioning, operation

6.4 Assembly of piston unit
The piston unit of the LR-Cal LDW-HK has its own transportation box that should be used for storing the unit when not in operation, and if the customer ever has to send the unit back for recalibration. The following details show how the piston is to be assembled/disassembled to the main body.

1. Unscrew the knurled retaining cap from the main body.
2. Place the piston head on a flat surface, with the piston facing vertically.
3. Fit the knurled retaining cap to the piston via the eccentric hole.
4. Place the main piston body with the external thread in a vertical position.
5. Lubricate the piston with the pressure medium, and insert the piston into the cylinder in the main body in a vertical direction only.

WARNING!
Do not apply any transverse force. Excess force is not required.

6. Tighten the knurled retaining cap to the main body.
7. Lift the piston head until it engages against its internal stop. This movement should be free.
6. Commissioning, operation

6.5 Assembly of the pressure balance

1. Fit the piston unit to the left hand connection. Ensure that the mating faces are clean and the 12 mm diameter O-ring seal correctly located. Excess force is not required to achieve an effective seal.

2. Check the level of the system base with the spirit level on the piston-cylinder unit. Level if necessary by using the levelling screws. If using as a comparator, fit additional loose union connection (order-code LDW-PAS-G12) to port that piston unit would be fitted to.

3. Fit the appropriate connection to the gauge stand, using a bonded seal to make the joint and screw a test gauge (for installation use a known gauge) into position, also with a bonded seal.

4. If preferred, a copper or leather washer can be substituted for the bonded seal at the gauge. The loose nut on the pressure balance base enables the gauge to be positioned as required and for back connection gauges the angle connection (order-code CPB5000-WA90) is screwed into the loose union connection.

6.5.1 Filling the base unit with liquid

1. Remove filler plug from reservoir by prising plug out. (This plug should be left out whilst in use).

2. Open valves A and B.

3. Wind screw pump handle fully clockwise.

4. Fill reservoir with appropriate liquid. Use the oil supplied or an approved substitute for oil systems. Do not use other liquids. Castor based oils, Skydrol, solvents or similar liquids will attack the seals fitted in the pressure balance.

5. Wind screw pump handle fully anti-clockwise.

6. Top up reservoir if necessary.

Wear safety goggles!

Protect eyes from flying particles and liquid splashes.

6.5.2 Post assembly test

1. Carry out a test calibration of a known instrument (see chapter 6.6 "Procedure") to ensure that the unit is working correctly.

Manual Model LR-Cal LDW-HK
6. Commissioning, operation

2. Release the pressure and remove the test instrument.

To remove the instrument from the system, use the appropriate size of spanners on the top section of the pressure connection and on the body of the instrument only. Ensure that the lower part of the pressure connection is not rotated as this may release it from the base.

3. The system is now ready for use.

CAUTION!

If the volume required to be filled is very large requiring the use of an additional pump and reservoir to be connected to the LR-Cal LDW-HK, it is ESSENTIAL to ensure that valve B is kept open and valve A closed at all times otherwise a high pressure can be built up on the low pressure ram of the screw press and damage caused. To ensure this does not happen we can supply the system itted with a relief valve, which will release at a set pressure, should the valve operation be incorrect.

Alternatively, we can supply a modified system and hand pump for this operation. For further information on both items contact DRUCK & TEMPERATUR Leitenberger GmbH.

When testing equipment with a large volume, the capacity of the screw pump (65 cm³) may be insufficient to reach the pressure required. In this case, the equipment should be filled as far as possible with the liquid before connecting it to the system, so that the displacement needed is reduced.

Dirty or chemically contaminated test items should not be itted as they contaminate the system unless they are first cleaned.

Wear safety goggles!

Protect eyes from flying particles and liquid splashes.

6.6 Procedure

1. Fit instrument to be tested to gauge stand.
6. Commissioning, operation

2. Load the weights equivalent to the desired pressure. Each weight is marked with its pressure value. The piston-cylinder unit has a basic psi start, for other pressure units (e.g. bar) a make-up weight is added to the piston head for conversion to bar.

For calibrating pressures less than the pressure value of the overhang make-up weight value, it is recommended that the top loading weights are used for calibration. When the required pressure calibration unit is bar, it is essential that the small make-up weight is itted first before any other top loading weights.

For calibrating pressures greater than the pressure value overhang make-up weight value, the overhang should be fitted. All top loading weights must be removed before fitting the overhang (bell jar).

When the overhang is fitted, the initial weight that goes onto it is a large annular make-up weight. The small type make-up weight should not be used when the overhang is fitted.

6.6.1 To apply pressure

For pressures up to 140 bar (2,000 psi)
2. Wind screw pump handle clockwise. This will generate pressure up to approximately 140 bar or 2,000 psi, as handle is wound in. When handle becomes sti to rotate this will indicate that the pressure limit for this range has been reached.

For pressures above 140 bar (2,000 psi)
1. Ensure valve B closed and valve A open.
2. Wind screw pump handle clockwise until the handle becomes sti to operate.
3. Close Valve A and open valve B.
4. Continue to wind screw pump handle clockwise. This will generate pressure up to approximately 1,200 bar or 16,000 psi.
5. When the piston rises and appears to floats, this indicates it is at its nominal desired pressure. When only top loading weights are being utilised, a blue and yellow band indicates the float position. When the overhang is being employed, the bottom of the overhang will line up with a machined groove in the piston holders main body, to indicate its nominal desired pressure.
6. Commissioning, operation

6.6.2 During calibration
When the pressure balance is correctly set up and there are no leaks the piston should "float" for many minutes without it being necessary to touch the screw pump handwheel.

On the initial setting up, however, there may be some air trapped in the base of the piston/cylinder unit. As this leaks past the piston the weights may fall slightly but it will only be for a matter of a few minutes until the air has escaped. If the piston continues to fall, check the connections for leaks.

During calibration, the weights should be rotated by hand. It is desirable that the weights should only be rotated when approximately the correct pressure is obtained. Weights should not be brought to rest by fully releasing the pressure and allowing the piston head to rotate against its stop under the full load of the weight pile.

It is essential that the weights spin freely during readings. The piston stops moving when the pressure is too high or too low. At the lowest pressures the weights will not spin for more than a few seconds unless a very thin oil is used, but providing the weight is rotated by hand before taking a reading and is obviously "floating" an accurate reading will be given.

CAUTION!
Care should be exercised at all times when rotating the weights. Failure to do so may cause damage to the actual piston unit, or possibly injury to the operator.

Therefore, the rotational motion should be stopped by hand. Only then new masses for further test points can be placed or the pressure can be released completely.

6.6.3 Datum levels
When testing gauges on liquid it is occasionally necessary to take into account heads of liquid since a height difference of 10 mm corresponds to approximately 1 mbar. The datum levels of the models LR-Cal LDW-HK piston units are marked with a groove on the outer diameter of the piston unit. It should be noted that when the pressure balance is re-calibrated by a laboratory other than LEITENBERGER, the datum level at which the tests have been carried out may differ from this standard and therefore allowance should be made for any variation.

The drawing shows the head effect that may have to be compensated for when high accuracy calibration is desired. The following formula will enable the head correction to be calculated.
6. Commissioning, operation

6.7 Completion

1. After the test is finished wind screw pump handle anti-clockwise to lower pressure.

2. Gently open valve A or B to release residual pressure.

3. Ensure that both valves A and B are fully open.

The system is now ready for another test and any residual pressure is relieved.

6.8 Correction calculations with MS Excel sheet

This Excel sheet enables the user to define his equipment and local conditions (gravity, temperature), so that when nominal pressures are entered, actual achieved pressures are shown.

These actual pressures will then be to the standard accuracy of the pressure balance. To achieve the improved standard accuracy the user must consider the correction factor given on the improved accuracy certificate supplied with the piston unit.

Download link for this MS Excel sheet: http://www.lr-cal.net/dwt-corrections.zip

\[\Delta P \text{ due to head effects} = \sigma \cdot H \cdot g \]

Where

- \(\sigma \) = density (kg/m²)
- \(H \) = height (in metres)
- \(g \) = gravity (m/s²)

Density of VG 22 oil = 885 kg/cm³

Cylinder datum

Zero buoyancy datum

\[\text{Pressure (Pa)} = \sigma \cdot H \cdot g \]
6. Commissioning, operation

Default conditions are input at Leitenberger but once the user alters these, his values then become the default (no need to repeatedly insert your values).

6.9 Temperature measurement of piston units
For many purposes, such as calibrating most type of dial gauges and transducers, accurate knowledge of the temperature of a piston unit is not necessary. However, in order to achieve the utmost accuracy from a pressure balance it is important to know the temperature of the piston unit as close as possible to the working part of the unit.

In laboratories where the room temperature is controlled it is most likely that the temperature of the working parts of the unit will not differ from the ambient temperature by more than 0.5 °C. When working in uncontrolled temperatures, however, one would have to measure the temperature of the piston unit.

A possible way to do this is to use a disc shaped thermistor type probe sensing element taped to the outer surface of the piston unit. The sensing element should be insulated from the ambient temperature by covering the element with a thin strip of polystyrene, or other insulating material, then taping this to the piston unit.

6.10 Cleaning gauges
This cleaning/degreasing process is only suitable for use with pressure gauges with either phosphor bronze, beryllium copper, monel or stainless steel bourdon tubes in the form of a "C".

It is not advisable to degrease pressure gauges with steel bourdon tubes since a very small amount of corrosion on the bore of a bourdon tube can cause inaccuracies of reading and early failure of the tube.
6. Commissioning, operation

Wear safety goggles!
Protect eyes from flying particles and liquid splashes.

This method of cleaning is not suitable for use with pressure gauges which are fitted with coiled bourdon tubes, nor any gauges which are to be used on oxygen, as complete removal of oil is not assured. Please contact DRUCK & TEMPERATUR Leitenberger GmbH.

Equipment
This consists of a syringe and a special needle with the point bent through 90°.

Instructions
1. Fill syringe with solvent (suitable cold degreasing liquid).
2. With gauge connection pointing upwards put needle into connection and insert by feel the point into the hole leading to the tube.
3. Inject the solvent. Ideally the tube should be half full.
4. Shake gauge in various attitudes to agitate solvent.
5. Suck solvent back into syringe, holding gauge at an angle.
6. Check that solvent removed is clean. To be sure that all oil has been removed, repeat cleaning process until solvent removed from gauge is as clean as that put in.
7. Maintenance, cleaning and recalibration

7.1 Periodic maintenance
Repairs must only be carried out by DRUCK & TEMPERATUR Leitenberger GmbH. Cleaning the units and checking the liquid levels is the only periodic maintenance required. With normal use, no further maintenance should be necessary. If required, the system can be returned to the manufacturer for re-conditioning. Accuracy, overhaul and re-certification are also explained in chapter 7.4.1 "Factory overhaul and re-certification of pressure balances maintenance of accuracy".

Fluids, which attack ABS, should be used with caution. Continual immersion of the cover in such fluids will cause deterioration. Spillage’s should be wiped of immediately.

7.2 Corrective maintenance

7.2.1 General
This section contains details on stripping the unit and replacing the spare parts which are listed (see chapter 10 "Accessories"). The component identification numbers in brackets in each procedure refer to the following figure.

7.2.2 Removing the cover
1. Drain as much oil as possible from the pressure balance by winding the screwpress fully clockwise and using a drain screwed in the gauge stand.
2. Unscrew the loose union connection and piston-cylinder unit.
3. Remove the oil cups by levering upwards carefully.
4. Slacken the socket set screw using a 3 mm hexagon wrench key and remove both handwheels.
5. Remove the four cover retaining screws and lift of the cover.

7.2.3 Reservoir seals
1. Unscrew two screws and remove the reservoir cover
2. Remove the O-ring seal (6) from the recess and the seloc seal (7) from the screws.
3. On replacement ensure all sealing faces are absolutely clean and do not overtighten screws.
7. Maintenance, cleaning and recalibration
7. Maintenance, cleaning and recalibration

7.2.4 Valve seals
1. Unscrew the gland nut.
2. Unscrew the valve spindle and remove the bonded seal.
3. Slide gland nut of spindle.
4. Using a suitable hooked tool remove the O-ring seal (9) from the bore of the gland nut. Renew O-ring and bonded seal (10).
5. On replacement ensure that O-ring is correctly located in the groove and all sealing faces are clean. Remove all burrs from spindle.

7.2.5 Screw pump
1. Using a 4mm hexagon wrench key unscrew the six socket head cap screws securing the hub locating plate. (These are positioned inside the recess in the back of the aluminium hub).
2. By carefully pulling the hub the complete ram assembly can now be withdrawn from the barrel (During this operation a container is required beneath the barrel to catch any liquid).
3. Unscrew the ram from the hub assembly.
4. The high pressure seal (12) and low pressure seal (15) can now be replaced. Before fitting the new seals check the ram is not scored on the locating diameters.
5. At this point the hub assembly should be checked for excess play indicating wear in the bearing and for wear in the screwed spindle and nut. If any wear is found it will be necessary to dismantle the hub assembly.
6. Check the bore of the block assembly (11) is not badly scored or pitted. If a replacement is required this item is supplied complete with valves. The block is attached to the base by socket head cap screws.
7. Re-assembly is a straightforward reversal of the above procedures.

On assembly care should be taken to align the ram to prevent bending, or damage to the seals. Excessive force should not be used.

The socket head cap screws are not spaced equally around the locating langes so check hole alignment before inserting screws.
7. Maintenance, cleaning and recalibration

7.2.6 Hub assembly

1. Unscrew the ram from the spindle. NOTE: left hand thread.
2. Unscrew the spokes from the hub.
3. Knock out the spring pin(1), found at the bottom of one of the tapped spoke holes in the hub, using a punch 6 mm dia. Pull of hub.
4. The hub locating plate and thrust bearing can now be removed from the spindle.
5. If the langed bush (2) is to be renewed, it should be pressed out of the locating plate and a new one pressed in squarely.
6. The thrust bearing (3) is renewed as a complete assembly.
7. The nut, pin and spindle sub-assembly (4) can only be replaced as a matched pair.
 Unscrew the nut from the ram, gripping in a soft jaw vice and screw in the new nut.
8. Assemble the thrust bearing, locating plate and hub on to the spindle, lubricating with molybdenum disulphide grease.
9. Clamp these items together to eliminate end play and re-assemble spring pin. If using new spindle drill through 6.3 mm diameter to it spring pin(1).
10. Lubricate the thread with molybdenum disulphide grease and screw into ram nut.

7.2.7 Piston-cylinder unit

As the piston-cylinder unit represents a high proportion of the total value of the pressure balance, it should always be handled with care and every effort made to keep it clean.

The piston-cylinder unit is made to extremely fine limits of accuracy and it is not advisable to dismantle it. If it is necessary to clean it, the piston and cylinder bore must be oiled immediately, in order to protect the high grade finish.

Should the unit become damaged it should be returned complete for replacement or repair. Parts from different units are not interchangeable as they have to be weighed and evaluated as a whole.

The serial number of the piston-cylinder unit appears in the certificate of accuracy and is marked on the body of the unit. This number, as well as the pressure balance serial number should always be quoted in correspondence concerning the piston/cylinder unit.

The piston-cylinder connections should be blanked if it is removed from the pressure balance. If the unit is taken of for any reason it should be stored upside-down, resting on its weight carrier.
7. Maintenance, cleaning and recalibration

This covers stripping the unit to enable simple repairs and the fitting of recommended spare parts to be carried out.

7.3 Cleaning
Cleaning the unit and checking the liquid levels.

Oil operation
Keep the system clean and free from spilt oil. Wipe out the oil cups under the gauge stands as necessary. Do not use any cleansing solvents as they may damage the seals.

Ensure that the reservoir contains sufficient liquid to carry out any calibrations required. If necessary top up the reservoir with the same liquid that is already being used. Do not mix various types or brands of liquid in the pressure balance.

If the oil in the system becomes dirty, use the screw pump to flush through the clean oil with a drain screwed in the gauge stand. (An angle connection is suitable). The screw pump should be turned fully clockwise before starting.

Wear safety goggles!
Protect eyes from flying particles and liquid splashes.

For information on returning the instrument see chapter 9.1 "Return".

7.4 Recalibration
Factory or DKD/DAkkS Certificates:
We recommend that the instrument is regularly recalibrated by the manufacturer, with time intervals of 5 years. The basic settings will be corrected if necessary.

7.4.1 Factory overhaul and re-certification of pressure balances maintenance of accuracy.
The accuracy of a pressure balance depends primarily on the effective area of the piston unit and on the weights applied to the piston. The effective area of the piston unit can be affected by wear of the unit. This is generally caused by contamination of the oil in the pressure balance by foreign matter from instruments being calibrated, by water, or by chemicals from instruments, or by rust or corrosion caused by contaminants.
7. Maintenance, cleaning and recalibration

Weights are made of austenitic stainless steel which are entirely stable. They should be periodically cleaned using a non abrasive method to remove any foreign matter.

7.4.2 Need for overhaul and re-certification

We recommend that the pressure balance be returned to us for overhaul and re-certification at any time if when used in accordance with instructions:

1. The piston does not spin freely.
2. The rate of fall of the piston is appreciably greater than when new and makes use of the pressure balance difficult.
3. The weights are damaged.
4. The pressure balance cannot be made to operate satisfactorily due to wear or damage to pump piping or valves which cannot be rectified by the user.

This pressure balance can be used for calibration of instruments with an expected accuracy of 1, 0.5 or 0.25 %. Such pressure balances need not be sent back frequently for overhaul and re-certification and provided they are working well can be trusted for many years. Under these circumstances, an interval of five years might be appropriate between overhauls.

When high accuracy of the pressure balances is required, it should be returned for overhaul and re-certification more frequently. The actual period will depend on how the pressure balance is used. A pressure balance kept in a laboratory and carefully used might need to be returned every two to five years. A pressure balance carried from site to site and used for calibrating high accuracy gauges or transducers from industrial process plant or for measuring pressures directly might well need to be returned at intervals of less than specified above.

The actual period between overhaul and re-certification should be fixed by the user in the light of the above comments taking into account the requirements of any inspection authority, which might be involved.

7.4.3 Identification of weights

All weight sets supplied with a pressure balance have allocated, and are marked, with a weight set number. Additionally, if users wish to ensure that only specific weights are used with an individual pressure balance or piston and cylinder unit, then the serial number of the pressure balance, and/or piston-cylinder unit may also be marked on the main weights. Regrettably due to size of certain weights, not all the above information may be marked.
7. Maintenance, cleaning and recalibration

7.4.4 Overhaul and re-certification

To provide the best possible service, the pressure balance should be returned as complete units comprising the base, the piston and cylinder unit, and all the weights. The base can also be serviced itself. The piston-cylinder unit with weights has to be sent back for overhaul. In such instances, certification issued after overhaul can only refer to the piston and cylinder and weight set numbers and not to the base to which they were originally fitted.

Pressure balance bases will be stripped, all pipework cleaned, all seals replaced, worn components replaced where desirable, and all reassembled and tested.

The weights will all be checked and brought to within original limits if possible. If one or two weights are missing or beyond economical repair they will be replaced. If more are missing/beyond economical repair customer instructions will be sought.

The piston unit will be checked for accuracy and sensitivity. If it is not satisfactory for any reason a quotation will be submitted for a replacement unit.

A new certificate of accuracy will be issued for each overhauled pressure balance. Unless otherwise instructed on order when there has been a slight change in area of the piston unit the certificate will reflect this; the accuracy will not be affected by more than 0.03%. For example the certificate of accuracy of an overhauled pressure balance might show that the error does not exceed 0.05% when the original certificate shows that the error did not exceed 0.02%.

We can issue a factory or DKD/DAkkS certificate of calibration for an overhauled system. Details will be supplied on request.
8. Faults

<table>
<thead>
<tr>
<th>Faults</th>
<th>Causes</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment does not provide any output pressure.</td>
<td>No liquid in pressure balance.</td>
<td>Check that pressure balance is filled with liquid. Fill the equipment with fluid as necessary. See chapter 6.5.1 “Filling the equipment with liquid”.</td>
</tr>
<tr>
<td></td>
<td>Valve B is open.</td>
<td>Close valve B and try again.</td>
</tr>
<tr>
<td></td>
<td>Component being tested has a large volume.</td>
<td>Pre-fill component with liquid before test.</td>
</tr>
<tr>
<td></td>
<td>Missing or damaged liquid seals shown by signs of unexplained liquid leaks.</td>
<td>Examine seals on equipment to ensure they are fitted correctly and are undamaged. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Valve B handwheel disconnected from spindle.</td>
<td>Examine valve B. Tighten up nut securing handwheel to spindle as necessary.</td>
</tr>
<tr>
<td></td>
<td>Valve B assembly or valve seat damaged.</td>
<td>Examine condition of valve B and valve seat. Replace valve assembly or return pressure balance to Leitenberger (LR-Cal) for overhaul as necessary.</td>
</tr>
<tr>
<td></td>
<td>If unable to locate a cause.</td>
<td>Return pressure balance to Leitenberger (LR-Cal) for investigation.</td>
</tr>
<tr>
<td>Equipment provides pressure but pressure decays to zero</td>
<td>Incorrect operating procedure being used.</td>
<td>Ensure that correct operating procedure is being followed (see chapter 6.6).</td>
</tr>
<tr>
<td></td>
<td>Missing or damaged liquid seals shown by signs of unexplained liquid leaks.</td>
<td>Examine seals on equipment to ensure they are fitted correctly and are undamaged. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Valve A or Valve B valve assembly or valve seat damaged.</td>
<td>Examine condition of valves A and B and valve seat. Replace valve assembly or return pressure balance to Leitenberger (LR-Cal) for overhaul as necessary.</td>
</tr>
<tr>
<td></td>
<td>If unable to locate a cause.</td>
<td>Return pressure balance to Leitenberger (LR-Cal) for investigation.</td>
</tr>
</tbody>
</table>
8. Faults

<table>
<thead>
<tr>
<th>Faults</th>
<th>Causes</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment provides pressure but pressure decays when valves A and B are operated.</td>
<td>Incorrect operating procedure being used.</td>
<td>Ensure that correct operating procedure is being followed (see chapter 6.6).</td>
</tr>
<tr>
<td>If unable to locate a cause.</td>
<td>Return pressure balance to Leitenberger (LR-Cal) for investigation.</td>
<td></td>
</tr>
<tr>
<td>Equipment provides pressure but pressure decays to lower value then remains steady.</td>
<td>Insufficient liquid in pressure balance.</td>
<td>Check liquid level in reservoir. Fill reservoir with correct liquid as necessary (see chapter 6.5.1).</td>
</tr>
<tr>
<td>Air in the system</td>
<td>Prefill component under test with appropriate liquid. If necessary refill pressure balance with appropriate liquid.</td>
<td></td>
</tr>
<tr>
<td>If unable to locate a cause.</td>
<td>Return pressure balance to Leitenberger (LR-Cal) for investigation.</td>
<td></td>
</tr>
<tr>
<td>Internal damage</td>
<td>Return pressure balance to Leitenberger (LR-Cal) for investigation.</td>
<td></td>
</tr>
<tr>
<td>Incorrect operating procedure being used.</td>
<td>Return pressure balance to Leitenberger (LR-Cal) for investigation.</td>
<td></td>
</tr>
<tr>
<td>Pressure balance screw press becomes very stiff to operate when pressure balance is being used in range below 140 bar (2,000 psi)</td>
<td>Internal damage</td>
<td>Return pressure balance to Leitenberger (LR-Cal) for investigation.</td>
</tr>
<tr>
<td>Pressure balance screw press becomes very stiff to operate when pressure balance is being used in range above 140 bar (2,000 psi)</td>
<td>Incorrect operating procedure being used.</td>
<td>Ensure that correct operating procedure is being followed (see chapter 6.6).</td>
</tr>
<tr>
<td>If unable to locate a cause.</td>
<td>Return pressure balance to Leitenberger (LR-Cal) for investigation.</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION!
If faults cannot be eliminated by means of the measures listed above, the pressure balance must be shut down immediately, and it must be ensured that pressure is no longer present, and it must be prevented from being inadvertently put back into service. In this case, contact DRUCK & TEMPERATUR Leitenberger GmbH. If a return is needed, please follow the instructions given in chapter 9.1 “Return”.

9. Return and disposal

WARNING!
Residual media at the pressure balance can result in a risk to persons, the environment and equipment. Take sufficient precautionary measures.

9.1 Return

WARNING!
Strictly observe the following when shipping the instrument:
All instruments delivered to Leitenberger (LR-Cal) must be free from any kind of hazardous substances (acids, bases, solutions etc.).

When returning the instrument, use the original packaging or a suitable transport package.

To avoid damage:
1. Place the piston-cylinder unit into the designed transport box (see chapter 6.4 „Assembly of piston unit“).
2. Wrap the instrument in an antistatic plastic film.
3. Place the instrument, along with the shock-absorbent material, in the packaging. Place shock-absorbent material evenly on all sides of the transport packaging.
4. If possible, place a bag, containing a desiccant, inside the packaging.
5. Label the shipment as transport of a highly sensitive measuring instrument.
9. Return and disposal / 10. Accessories

9.2 Disposal
Incorrect disposal can put the environment at risk.
Dispose of instrument components and packaging materials in an environmentally compatible way and in accordance with the country-specific waste disposal regulations.

This marking on the instruments indicates that they must not be disposed of in domestic waste. The disposal is carried out by return to the manufacturer or by the corresponding municipal authorities (see EU directive 2002/96/EC).

10. Accessories

<table>
<thead>
<tr>
<th>Description/Features</th>
<th>Order-Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trim-masses (1 mg up to 50 g), class F1</td>
<td>LDW-FMS-F1</td>
</tr>
<tr>
<td>Trim-masses (1 mg up to 50 g), class M1</td>
<td>LDW-FMS-M1</td>
</tr>
<tr>
<td>Set of 2 weight carrying cases</td>
<td>LDW-HK-KOFFER-MS</td>
</tr>
<tr>
<td>Carrying case for LR-Cal LDW-HK Instrument base</td>
<td>LDW-HK-KOFFER-BM</td>
</tr>
<tr>
<td>Set of adapters "BSP" for test item connection G 1/2 male on G 1/8, G1/4, G 3/8 and G 1/2 female</td>
<td>LDW-ADAPTER-BSP</td>
</tr>
<tr>
<td>Set of adapters "NPT" for test item connection G 1/2 male on 1/8 NPT, 1/4 NPT, 3/8 NPT and 1/2 NPT female</td>
<td>LDW-ADAPTER-NPT</td>
</tr>
<tr>
<td>Set of adapters "metric" for test item connection G 1/2 male on M12 x 1.5 and M20 x 1.5 female</td>
<td>LDW-ADAPTER-M</td>
</tr>
<tr>
<td>Test item connection, 3/4" BSP female to 1/2" BSP female, loose union</td>
<td>LDW-PAS-G12</td>
</tr>
<tr>
<td>Angle connection 90°, for test item with back mounting connection</td>
<td>CPB5000-WA90</td>
</tr>
<tr>
<td>Separator (to separate 2 liquid media by a diaphragm) max. 700 bar</td>
<td>LDW-TV-M-0700</td>
</tr>
<tr>
<td>Separator (to separate 2 liquid media by a diaphragm) max. 1,200 bar</td>
<td>LDW-TV-M-1200</td>
</tr>
<tr>
<td>Set of spare seals for LR-Cal LDW-HK Instrument base</td>
<td>LDW-HK-R-SET</td>
</tr>
<tr>
<td>Operating fluid for LR-Cal LDW-series up to 4,000 bar, 1 litre</td>
<td>CPB5000-FLUID</td>
</tr>
<tr>
<td>SPARE: Tool kit including spanners, BSP adapters, spare seals, gauges pointer punch and pointer puller</td>
<td>LDW-HK-W-SET</td>
</tr>
</tbody>
</table>

* hexagon wrench key 3 mm A/F
* 2 x 30 mm A/F open-ended spanners
* 1 spirit level
* 4 level plates
* 1 bag of seals
* 1/2" BSP angle connection
* 1 pointer press-on tool
* 1 pointer remover
* 1 test item connection
EC Declaration of Conformity

We declare under our sole responsibility that the CE marked products

Model:

LR-Cal LDW-HK

Description:

Deadweight Tester / Pressure Balance
Compact Design

according to the valid data sheet

LDW-HK

are in conformity with the essential protection requirements of the directive

97/23/EC (PED)
PS > 1,000 bar; Module A, pressure accessory

Signed for and on behalf of

DRUCK & TEMPERATUR Leitenberger GmbH
Kirchentellinsfurt/Germany, July 3rd., 2012

[Signature]

i.V. Gerd Brogle
Signature authorized by the company
Inhalt

1. Allgemeines 48
2. Sicherheit 50
 2.1 Bestimmungsgemäße Verwendung 50
 2.2 Personalqualifikation 51
 2.3 Persönliche Schutzausrüstung 51
 2.4 Besondere Gefahren 52
 2.5 Beschilderung, Sicherheitskennzeichnungen 54
3. Technische Daten 55
4. Aufbau und Funktion 64
 4.1 Beschreibung 64
 4.2 Lieferumfang 64
 4.3 Basement 64
 4.4 Kolbeneinheit 66
 4.5 Funktionen 67
5. Transport, Verpackung und Lagerung 68
6. Inbetriebnahme, Betrieb 69
 6.1 Auspacken der Druckwaage / des Kolbenmanometers 69
 6.2 Umgebungsbedingungen 69
 6.3 Aufstellen des Basements 69
 6.4 Zusammenbau der Kolbeneinheit 70
 6.5 Zusammenbau der Druckwaage / des Kolbenmanometers 71
 6.6 Vorgehensweise 72
 6.7 Abschlussarbeiten 75
 6.8 Korrekturberechnungen mit MS Excel Arbeitsblatt (kostenloser Download) 76
 6.9 Kolbentemperaturmessung 76
 6.10 Reinigung der Messgeräte 77
7. Wartung, Reinigung und Rekalibrierung 78
 7.1 Periodische Wartung 78
 7.2 Instandhaltung 80
 7.3 Reinigung 83
 7.4 Rekalibrierung 83
8. Störungen 86
9. Rücksendung und Entsorgung 88
10. Zubehör 89

Anlage: EG-Konformitätserklärung Typ LR-Cal LDW-HK
1. Allgemeines

Diese Betriebsanleitung gibt wichtige Hinweise zum Umgang mit dem Gerät. Voraussetzung für sicheres Arbeiten ist die Einhaltung aller angegebenen Sicherheitshinweise und Handlungsanweisungen.

Die für den Einsatzbereich des Gerätes geltenden örtlichen Unfallverhütungsvorschriften und allgemeinen Sicherheitsbestimmungen einhalten.

Diese Betriebsanleitung ist Produktbestandteil und muss in unmittelbarer Nähe des Gerätes für das Fachpersonal jederzeit zugänglich aufbewahrt werden.

Das Fachpersonal muss die Betriebsanleitung vor Beginn aller Arbeiten sorgfältig durchgelesen und verstanden haben.

Die Haftung des Herstellers erlischt bei Schäden durch bestimmungswidrige Verwendung, Nichtbeachten dieser Betriebsanleitung, Einsatz ungenügend qualifizierten Fachpersonals sowie eigenmächtiger Veränderung am Gerät.

Es gelten die allgemeinen Geschäftsbedingungen in den Verkaufsunterlagen.

DRUCK & TEMPERATUR Leitenberger GmbH behält sich das Recht vor, die Inhalte oder die Form von dieser Betriebsanleitung jederzeit ohne vorherige Ankündigung zu ändern.

Technische Änderungen vorbehalten.

Werkskalibrierungen oder DKD-/DAkkS-Kalibrierungen (Druckkalibrierung mit einem Massensatz) erfolgen nach internationalen Normen.
1. Allgemeines

- Weitere Informationen:
 DRUCK & TEMPERATUR Leitenberger GmbH
 - Internet Adresse: www.LR-Cal.net
 - Zubehöriges Datenblatt: LDW-HK
 - Kontaktdaten:
 Tel.: (+49) 7121-90920-0
 Fax: (+49) 7121-90920-99
 E-mail: DT-Info@Leitenberger.de

- Symbolerklärung

 GEFAHR!
 ... weist auf eine unmittelbar gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht gemieden wird.

 WARNUNG!
 ... weist auf eine möglicherweise gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht gemieden wird.

 VORSICHT!
 ... weist auf eine möglicherweise gefährliche Situation hin, die zu geringfügigen oder leichten Verletzungen bzw. Sach- und Umweltschäden führen kann, wenn sie nicht gemieden wird.

 Information
 ... hebt nützliche Tipps und Empfehlungen sowie Informationen für einen effizienten und störungsfreien Betrieb hervor.
2. Sicherheit

WARNUNG!
Vor Montage, Inbetriebnahme und Betrieb sicherstellen, dass das richtige Kolbenmanometer hinsichtlich Messbereich, Ausführung und spezifischen Messbedingungen ausgewählt wurde. Bei Nichtbeachten können schwere Körperverletzungen und/oder Sachschäden auftreten.

Weitere wichtige Sicherheitshinweise befinden sich in den einzelnen Kapiteln dieser Betriebsanleitung.

2.1 Bestimmungsgemäße Verwendung
Druckwaage / Kolbenmanometer sind die genauesten am Markt verfügbaren Geräte zur Kalibrierung von elektronischen oder mechanischen Druckmessgeräten. Durch die Messung des Druckes als Quotient aus Kraft und Fläche \((p = F/A)\) sind Kolbenmanometer (Druckwaagen) als Primärnormale zugelassen.

Aufgrund der autarken Arbeitsweise (integrierte Druckerzeugung sowie dem rein mechanischen Messprinzip), ist der Typ **LR-Cal LDW-HK** ideal für den Einsatz vor Ort, in der Wartung und im Service geeignet.

Das Gerät ist ausschließlich für den hier beschriebenen bestimmungsgemäßen Verwendungszweck konzipiert und konstruiert und darf nur dementsprechend verwen-det werden.

Die technischen Spezifikationen in dieser Betriebsanleitung sind einzuhalten. Eine unsachgemäße Handhabung oder ein Betreiben des Gerätes außerhalb der technischen Spezifikationen macht die sofortige Stilllegung und Überprüfung durch einen autorisierten LEITENBERGER-Servicemitarbeiter erforderlich.
2. Sicherheit

Mechanische Präzisionsmessgeräte mit erforderlicher Sorgfalt behandeln (vor Nässe, Stößen, starken Magnetfeldern, statischer Elektrizität und extremen Temperaturen schützen, keine Gegenstände in das Gerät bzw. Öffnungen einführen).

Wird das Gerät von einer kalten in eine warme Umgebung transportiert, so kann durch Kondensatbildung eine Störung der Gerätefunktion eintreten. Vor einer erneuten Inbetriebnahme die Angleichung der Gerätetemperatur an die Raumtemperatur abwarten.

Ansprüche jeglicher Art aufgrund von nicht bestimmungsgemäßer Verwendung sind ausgeschlossen.

2.2 Personalqualifikation

WARNUNG!

Verletzungsgefahr bei unzureichender Qualifikation!

Unsachgemäßer Umgang kann zu erheblichen Personen- und Sachschäden führen.

- Die in dieser Betriebsanleitung beschriebenen Tätigkeiten nur durch Fachpersonal nachfolgend beschriebener Qualifikation durchführen lassen.
- Unqualifiziertes Personal von den Gefahrenbereichen fernhalten.

Fachpersonal

Das Fachpersonal ist aufgrund seiner fachlichen Ausbildung, seiner Kenntnisse der Mess- und Regelungstechnik und seiner Erfahrungen sowie Kenntnis der landesspezifischen Vorschriften, geltenden Normen und Richtlinien in der Lage, die beschriebenen Arbeiten auszuführen und mögliche Gefahren selbstständig zu erkennen.

Spezielle Einsatzbedingungen verlangen weiteres entsprechendes Wissen, z. B. über aggressive Medien.

DRUCK & TEMPERATUR Leitenberger GmbH bietet entsprechende Schulungen für den konkreten Einsatz unserer Produkte an. Für weitere Details kontaktieren Sie uns bitte.

2.3 Persönliche Schutzausrüstung

2. Sicherheit

Im Arbeitsbereich angebrachte Hinweise zur persönlichen Schutzausrüstung befolgen!

Die erforderliche persönliche Schutzausrüstung muss vom Betreiber zur Verfügung gestellt werden.

Schutzbrille tragen!
Schutz der Augen vor umherliegenden Teilen und Flüssigkeitsspritzern.

2.4 Besondere Gefahren

WARNUNG!
Für ein sicheres Arbeiten am Gerät muss der Betreiber sicherstellen,
- dass eine entsprechende Erste-Hilfe-Ausrüstung vorhanden ist und bei Bedarf jederzeit Hilfe zur Stelle ist.
- dass das Bedienpersonal regelmäßig in allen zutreffenden Fragen von Arbeitssicherheit, Erste-Hilfe und Umweltschutz unterwiesen wird, sowie die Betriebsanleitung und insbesondere die darin enthaltenen Sicherheitshinweise kennt.

WARNUNG!
Messstoffreste am Kolbenmanometer können zur Gefährdung von Personen, Umwelt und Einrichtung führen. Ausreichende Vorsichtsmaßnahmen ergreifen.

2.4.1 Umgang mit Mineralölen

DRUCK & TEMPERATUR Leitenberger GmbH liefert mineralisches Hydrauliköl in Behältern zu 500 ml, beschriftet mit "ISO VG 22" zur Verwendung in Kolbenmanometern mit bis zu 4.000 bar, es ist nicht gefährlicher als andere Schmieröle.

Es ist ganz normal, dass man in der Art und Weise, in der dieses Produkt verwendet wird, häufig und/oder längere Zeit damit in Kontakt kommt; bei einigen Personen kann dies Hautreizungen hervorrufen (Keratosis oder Dermatitis). Die Verwendung von Barriercremes und/oder Schutzhandschuhe kann diese Gefahr größtenteils ausschließen.
2. Sicherheit

Beschreibung

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammpunkt (geschlossen)</td>
<td>höher als 120 °C</td>
</tr>
<tr>
<td>Lagerung</td>
<td>nicht über 30 °C</td>
</tr>
<tr>
<td>LD50-Wert, oral</td>
<td>15 g pro Kilogramm Körpergewicht</td>
</tr>
<tr>
<td>Grenzwert</td>
<td>5 mg/m³</td>
</tr>
<tr>
<td>Feuerlöschende Mittel</td>
<td>CO₂/Trockenlöschmittel oder Wassernebel</td>
</tr>
<tr>
<td>Bei Verschütten</td>
<td>mit Binde- oder Absorptionsmittel aufsaugen</td>
</tr>
<tr>
<td>Entsorgung</td>
<td>an geeigneten Plätzen verbrennen oder entsorgen</td>
</tr>
</tbody>
</table>

Behandlung von Notfällen

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verschlucken</td>
<td>Nicht zum Erbrechen bringen.</td>
</tr>
<tr>
<td></td>
<td>250 ml Milch oder Olivenöl verabreichen.</td>
</tr>
<tr>
<td></td>
<td>Die größte Gefahr nach dem Verschlucken ist, dass die Flüssigkeit in die Lunge gelangt.</td>
</tr>
<tr>
<td>Aspiration in die Lunge</td>
<td>Sofort ins Krankenhaus</td>
</tr>
<tr>
<td>Einatmen</td>
<td>Für Frischluft sorgen, falls die Überkeit anhält, einen Arzt aufsuchen.</td>
</tr>
<tr>
<td>Augenkontakt</td>
<td>Mit reichlich Wasser mindestens 10 Minuten ausspülen. Tritt eine Augenreizung auf und hält diese Reizung an, Augenarzt aufsuchen.</td>
</tr>
<tr>
<td>Hautkontakt</td>
<td>Im Fall eines Hautausschlags oder anderen Auffälligkeiten nach einem längeren oder wiederholten Kontakt sollte umgehend ein Arzt aufgesucht werden.</td>
</tr>
</tbody>
</table>

2.4.2 Andere Flüssigkeiten

Für einige besondere Anwendungen, liefern wir speziell hergestellte Flüssigkeiten. Kopien der Herstellerdaten werden den Benutzern auf Anfrage zugesandt.

2.4.3 Anheben von Gewichten

WARNUNG!

2. Sicherheit

2.5 Beschilderung, Sicherheitskennzeichnungen

Typenschild

![Typenschild des Gerätes LDW-HK](image)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Vor Montage und Inbetriebnahme des Gerätes unbedingt die Betriebsanleitung lesen!</td>
</tr>
<tr>
<td>CE</td>
<td>CE, Communauté Européenne</td>
</tr>
</tbody>
</table>

Geräte mit dieser Kennzeichnung stimmen überein mit den zutreffenden europäischen Richtlinien.
3. Technische Daten

Kolbenzylindersysteme

<table>
<thead>
<tr>
<th>Messbereich (bar)</th>
<th>1 ... 120</th>
<th>2,5 ... 300</th>
<th>5 ... 700</th>
<th>10 ... 1.200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erforderliche Massen (kg)</td>
<td>41</td>
<td>50</td>
<td>58</td>
<td>50</td>
</tr>
<tr>
<td>Kleinster Step (Standardmassensatz) (bar)</td>
<td>1</td>
<td>2,5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Nominales Kolbenquerschnittsflächen (in²)</td>
<td>1/16</td>
<td>1/40</td>
<td>1/80</td>
<td>1/160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messbereich (psi)</th>
<th>10 ... 1.600</th>
<th>25 ... 4.000</th>
<th>50 ... 10.000</th>
<th>100 ... 16.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erforderliche Massen (kg)</td>
<td>38</td>
<td>47</td>
<td>58</td>
<td>47</td>
</tr>
<tr>
<td>Kleinster Step (Standardmassensatz) (psi)</td>
<td>10</td>
<td>25</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Nominales Kolbenquerschnittsflächen (in²)</td>
<td>1/16</td>
<td>1/40</td>
<td>1/80</td>
<td>1/160</td>
</tr>
</tbody>
</table>

Genauigkeiten

- Standard 0.05% vom Messwert
- Option 0.025% vom Messwert

Druckübertragungsmedium

Hydraulikflüssigkeit auf Mineralölbasis VG22 (0,5 l im Lieferumfang enthalten)

Werkstoff

- Kolben: Wolframcarbid
- Zylinder: Wolframcarbid
- Massensatz: CrNi-Stahl, nicht magnetisch

Gewicht

<table>
<thead>
<tr>
<th>Kolbenzylindersystem</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>BAR-Massensatz inkl. Glocke (kg)</td>
<td>41,5</td>
</tr>
<tr>
<td>PSI-Massensatz inkl. Glocke (kg)</td>
<td>47,5</td>
</tr>
<tr>
<td>Tragkoffer für Massensatz (optional, 2 Stück erforderlich) (kg)</td>
<td>5,8</td>
</tr>
</tbody>
</table>

Abmessungen

| Tragkoffer für Massensatz (optional) | B 400 x T 310 x H 310 mm und B 215 x T 310 x H 310 mm |

3) Die Genauigkeit wird ab 10 % des Messbereiches auf den Messwert bezogen. Im unteren Bereich gilt ein Festfehler; bezogen auf 10 % des Bereiches.

4) Messunsicherheit bei Referenzbedingungen (Umgebungstemperatur 20 °C, Luftdruck 1.013 mbar, relative Luftfeuchte 40 %).

Anleitung Modell LR-Cal LDW-HK Druckwaage / Kolbenmanometer
3. Technische Daten

Basement

<table>
<thead>
<tr>
<th>Anschlüsse</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschluss für Kolbenzylinder- system</td>
<td>Außengewinde G (\frac{3}{4}) B</td>
</tr>
<tr>
<td>Prülingsanschluss</td>
<td>Innengewinde G (\frac{3}{8}) freilaufende Überwurfmuttern, inkl. Adapterset auf Innengewinde G (\frac{1}{4}) und G (\frac{3}{8})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Messstoffberührte Bauteile</td>
<td>Austenitischer CrNi-Stahl, hochfestes Messing, Nitrilkautschuk</td>
</tr>
<tr>
<td>Druckübertragungsmedium</td>
<td>Hydraulikflüssigkeit auf Mineralölbasis VG22 (0,5 l im Lieferumfang enthalten)</td>
</tr>
<tr>
<td>Vorratsbehälter</td>
<td>170 cm³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gewicht</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement</td>
<td>13,5 kg</td>
</tr>
<tr>
<td>Aufbewahrungscofer für Basement (optional)</td>
<td>8,5 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zulässige Umgebungsbedingungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebstemperatur</td>
<td>18 ... 28 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abmessungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement</td>
<td>401 x 397 x 155 mm (B x T x H), Details siehe technische Zeichnung</td>
</tr>
</tbody>
</table>

Zulassungen und Zertiikate

<table>
<thead>
<tr>
<th>CE-Konformität</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Druckgeräteichtlinie</td>
<td>97/23/EG (Modul A)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zertiikat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalibrierung</td>
<td>Kalibrierzertiikat</td>
</tr>
<tr>
<td>Option: UKAS-Kalibrierzertiikat (Druckkalibrierung mit einem Massensatz)</td>
<td></td>
</tr>
</tbody>
</table>

Weitere technische Daten siehe Datenblatt „LDW-HK“ und Bestellunterlagen.
3. Technische Daten

Massentabellen
Die folgenden Tabellen zeigen für die jeweiligen Messbereiche die Anzahl der Massenstücke innerhalb eines Massensatzes mit ihren resultierenden Nenndrücken.

Sollten Sie das Gerät nicht unter Referenzbedingungen einsetzen (Umgebungstemperatur 20 °C, Luftdruck 1.013 mbar, relative Luftfeuchte 40 %), müssen entsprechende Korrekturen angebracht werden.

Die Scheibengewichte werden standardmäßig auf die Norm-Fallbeschleunigung von 9,80665 m/s² gefertigt. Als Option können sie aber auch auf ihren speziellen Einsatzort auf die örtliche Fallbeschleunigung abgestimmt werden.

<table>
<thead>
<tr>
<th>Messbereich [bar]</th>
<th>1 ... 120 Anzahl</th>
<th>Nenndruck je Stück [bar]</th>
<th>2,5 ... 300 Anzahl</th>
<th>Nenndruck je Stück [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolben und Ausgleichsgewicht</td>
<td>1 1</td>
<td>1 2,5</td>
<td>1 10</td>
<td></td>
</tr>
<tr>
<td>Kolben, Glocke und Glockenausgleichsgewicht</td>
<td>1 20</td>
<td>1 50</td>
<td>1 200</td>
<td></td>
</tr>
<tr>
<td>Massen (auf Glocke stapelbar)</td>
<td>1 20</td>
<td>1 50</td>
<td>1 200</td>
<td></td>
</tr>
<tr>
<td>Massen (auf Kolben stapelbar)</td>
<td>1 10</td>
<td>1 25</td>
<td>1 100</td>
<td></td>
</tr>
<tr>
<td>1 4</td>
<td>2 10</td>
<td>2 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2</td>
<td>1 5</td>
<td>1 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messbereich [bar]</th>
<th>5 ... 700 Anzahl</th>
<th>Nenndruck je Stück [bar]</th>
<th>10 ... 1200 Anzahl</th>
<th>Nenndruck je Stück [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolben und Ausgleichsgewicht</td>
<td>1 5</td>
<td>1 10</td>
<td>1 20</td>
<td></td>
</tr>
<tr>
<td>Kolben, Glocke und Glockenausgleichsgewicht</td>
<td>1 100</td>
<td>1 200</td>
<td>1 200</td>
<td></td>
</tr>
<tr>
<td>Massen (auf Glocke stapelbar)</td>
<td>1 100</td>
<td>1 200</td>
<td>1 200</td>
<td></td>
</tr>
<tr>
<td>Massen (auf Kolben stapelbar)</td>
<td>1 50</td>
<td>1 100</td>
<td>1 100</td>
<td></td>
</tr>
<tr>
<td>1 40</td>
<td>1 40</td>
<td>1 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 20</td>
<td>1 20</td>
<td>1 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 5</td>
<td>1 10</td>
<td>1 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Technische Daten

<table>
<thead>
<tr>
<th>Messbereich [psi]</th>
<th>10 ... 1.600</th>
<th>25 ... 4.000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl</td>
<td>Nenndruck je Stück [psi]</td>
</tr>
<tr>
<td>Kolben</td>
<td>1 10</td>
<td>1 25</td>
</tr>
<tr>
<td>Glocke und Glockenausgleichsgewicht</td>
<td>1 200</td>
<td>1 500</td>
</tr>
<tr>
<td>Massen (auf Glocke stapelbar)</td>
<td>5 200</td>
<td>1 250</td>
</tr>
<tr>
<td>Massen (auf Kolben stapelbar)</td>
<td>1 100</td>
<td>1 100</td>
</tr>
<tr>
<td></td>
<td>1 10</td>
<td>1 25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messbereich [psi]</th>
<th>50 ... 10.000</th>
<th>100 ... 16.000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl</td>
<td>Nenndruck je Stück [psi]</td>
</tr>
<tr>
<td>Kolben</td>
<td>1 50</td>
<td>1 100</td>
</tr>
<tr>
<td>Glocke und Glockenausgleichsgewicht</td>
<td>1 1.000</td>
<td>1 2.000</td>
</tr>
<tr>
<td>Massen (auf Glocke stapelbar)</td>
<td>7 1.000</td>
<td>1 2.000</td>
</tr>
<tr>
<td>Massen (auf Kolben stapelbar)</td>
<td>1 1.000</td>
<td>1 1.000</td>
</tr>
<tr>
<td></td>
<td>1 500</td>
<td>1 1.000</td>
</tr>
<tr>
<td></td>
<td>1 100</td>
<td>1 2.000</td>
</tr>
<tr>
<td></td>
<td>1 10</td>
<td>1 25</td>
</tr>
</tbody>
</table>
3. Technische Daten

Transportmaße Komplettgerät
Das Komplettgerät in Standardausführung und Standardlieferumfang besteht aus drei Packstücken auf einer Palette.
Die Abmessungen betragen 1.200 x 800 x 500 mm.

<table>
<thead>
<tr>
<th>Ausführung</th>
<th>Gewicht in kg netto</th>
<th>Gewicht in kg brutto</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ... 120 bar</td>
<td>71</td>
<td>89</td>
</tr>
<tr>
<td>2,5 ... 300 bar</td>
<td>71</td>
<td>89</td>
</tr>
<tr>
<td>5 ... 700 bar</td>
<td>71</td>
<td>89</td>
</tr>
<tr>
<td>10 ... 1.200 bar</td>
<td>71</td>
<td>89</td>
</tr>
<tr>
<td>10 ... 1.600 psi</td>
<td>68</td>
<td>86</td>
</tr>
<tr>
<td>25 ... 4.000 psi</td>
<td>68</td>
<td>86</td>
</tr>
<tr>
<td>50 ... 10.000 psi</td>
<td>68</td>
<td>86</td>
</tr>
<tr>
<td>100 ... 16.000 psi</td>
<td>68</td>
<td>86</td>
</tr>
</tbody>
</table>
Abmessungen in mm
(ohne Scheibengewichte)

Ansicht von vorne

Ansicht von der Seite
3. Technische Daten

(1) Prülingsanschluss
(2) Hochdruckabsperrventil
(3) Niederdruckabsperrventil
(4) Zweibereichsspindelpumpe mit Drehkreuz
(5) Kolbenzylindersystem
(6) Drehbare Füße
(7) Vorratsbehälter mit Verschlussschraube
(8) Bedienschema Druckerzeugung
3. Technische Daten

Standardanschluss Kolbenzylindersystem

- O-Ring 8,9 x 1,9
- Ölauffangrinne

Prülingsanschluss

- Adapter, siehe Lieferumfang
- Dichtring USIT 10,7 x 18 x 1,5
- Ölauffangrinne

Anleitung Modell LR-Col LDW-HK Druckwaage / Kolbenmanometer
3. Technische Daten

Verwendete Flüssigkeiten
Mineralisches Hydrauliköl mit einer Viskosität von 20 ... 37 cSt bei 40 °C, Viskositätsgrad VG20 bis VG37 gemäß ISO 3448 (BS 4231) wird für das Basement der LR-Cal LDW-HK verwendet. Die meisten Kunden können sich vor Ort geeignetes Öl (siehe unten) beschaffen, das auch in Hydraulikanlagen verwendet wird. Wir können unseren Kunden jedoch auch einen 500-ml-Kanister Öl mit dem Viskositätsgrad VG22 liefern.

Geeignete Öle für Kolbenmanometer
Folgende, im Handel erhältliche Öle sind für die Verwendung in Kolbenmanometern geeignet.

<table>
<thead>
<tr>
<th>Viskositäts-grad nach ISO 3448</th>
<th>Viskositätsklasse nach SAE</th>
<th>Shell</th>
<th>Esso</th>
<th>Mobil</th>
</tr>
</thead>
<tbody>
<tr>
<td>VG22</td>
<td></td>
<td>Tellus 22</td>
<td>Nuto H22</td>
<td>DTE 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tellus R22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VG32</td>
<td>10W</td>
<td>Tellus V32</td>
<td>Nuto H32</td>
<td>DTE Oil Light</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DTE 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VG37</td>
<td></td>
<td>Tellus 37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tellus R37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tellus T37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tellus V37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Andere Flüssigkeiten
Die Druckwaage LR-Cal LDW-HK ist für die Verwendung von mineralischen Ölen ausgelegt. Sollte ein Betreiber eine andere Flüssigkeit verwenden, hat er dafür zu sorgen, dass sich diese Flüssigkeit mit hochfestem Messing, CrNi-Stahl und Nitrilkautschuk verträgt, da dies die Materialien sind, mit der die Flüssigkeit in Kontakt kommt.

Flüssigkeiten, die ABS angreifen, mit Vorsicht verwenden. Kontinuierliches Eintauchen der Gehäuseabdeckung in solche Flüssigkeiten führt zu Beschädigungen. Verschüttete Flüssigkeit sofort wegwischen!

Schutzbrille tragen!
Schutz der Augen vor umherliegenden Teilen und Flüssigkeitsspritzern.

Anleitung Modell LR-Cal LDW-HK Druckwaage / Kolbenmanometer 63
4. Aufbau und Funktion

4.1 Beschreibung

4.2 Lieferumfang
- Gerätebasis
- Zweireichsspindelpumpe zum Füllen, Druckaufbau und Druckfeineinstellung
- Kolbenaufnahme mit Außengewinde G ¾ B
- Prüflingsanschluss mit Innengewinde G ½, freilaufende Überwurfmuttern
- Adapterset für Prüflingsanschluss G ½ B außen auf Innengewinde G ¾ und G ³/₈
- Kolbenzyllindersystem mit Glocke
- Massensatz getfertigt auf Norm-Fallbeschleunigung von 9,80665 m/s²
- Mineralöl VG22 (0,5 Liter)
- Werkzeug- und Wartungsset
- Betriebsanleitung in deutscher und englischer Sprache
- Werkskalibrierschein

Lieferumfang mit dem Lieferschein abgleichen.

4.3 Basement
Das Basement der Serie **LR-Cal LDW-HK** besteht aus einer massiven Grundplatte aus Aluminium, die aus vier höhenverstellbaren Füßen, einer Spindelpumpe, einem Vorratsbehälter, Stellventilen und Verrohrung zu zwei CrNi-Stahl-Druckanschlussblöcken besteht. Die Verrohrung und die oben genannten Baugruppen sind mit einer ABS-Abdeckung versehen, die leicht zu reinigen ist.

4.3.1 Spindelpumpe
Die Spindelpumpe ist an den Vorratsbehälter/Hochdruck-Zylinderblock geschraubt, der am Basement befestigt ist. Die nachfolgende Skizze zeigt einen Schnitt durch die Pumpe. Das über die Griffstücke (D) bedienbare Handrad (C) ist an der Gewindespindel (E) angebracht. Die Spindel (E) ist in einem Sinterlager gelagert (F). Wird die Spindel gedreht, treibt sie einen nicht drehenden Druckkolben (H und K) vorwärts, die Schubkraft wird durch ein Nadel-Axialkugellager (G) aufgenommen. Der große Durchmesser des Kolbens (H) im Pumpenzylinder (J) dient zum Vorfüllen des Drucksystems und erzeugt einen Vordruck auf bis zu etwa 140 bar (2.000 psi). Der kleine Durchmesser des Kolbens (K) im Hochdruck-Zylinderblock liefert die höheren Testdrücke von bis zu 1.200 bar (16.000 psi).
4. Aufbau und Funktion

Schnitt durch die Spindelpumpe
4. Aufbau und Funktion

4.3.2 Vorratsbehälter
Ein Flüssigkeitsbehälter ist oben auf dem Hochdruck-Zylinderblock angebracht. Zur Überwachung des Füllstands ist der Vorratsbehälter mit einem transparenten Deckel ausgestattet. Über eine mit einem Stopfen verschlossene Öffnung in der Mitte des Deckels kann der Behälter befüllt oder aufgefüllt werden (der Stopfen wird während des Betriebs des Kolbenmanometers entfernt). Der Vorratsbehälter enthält genügend Flüssigkeit (ca. 150 cm³) um den normalen Betrieb des Kolbenmanometers durchzuführen. Verdrängungsvolumen des Niederdruckkolbens = 60 cm³
Verdrängungsvolumen des Hochdruckkolbens = 10 cm³

4.3.3 Stellventile

4.3.4 Anschlussblöcke

4.4 Kolbeneinheit
4. Aufbau und Funktion

4.5 Funktionen

Um höhere Drücke zu erzeugen, wird Ventil A geschlossen, um den Prüfkreis gegen den Niederdruckbereich der Spindelpumpe abzudichten; Ventil B wird geöfnet, damit die Flüssigkeit im Niederdruckbereich der Spindelpumpe in den Vorratsbehälter zurückließen kann, sobald die Pumpe betätigt wird. Dies stellt sicher, dass die Pumpe betätigt werden kann, ohne dass große Kräfte auf das Handrad der Spindelpumpe gebracht werden müssen. Um den Prüfdruck zu entspannen, wird die Spindelpumpe zurückgedreht und das Ventil A geöfnet.
5. Transport, Verpackung und Lagerung

5.1 Transport
Druckwaage / Kolbenmanometer Typ LR-CoI LDW-HK auf eventuell vorhandene Transportschäden untersuchen.
Offensichtliche Schäden unverzüglich melden.

5.2 Verpackung
Verpackung erst unmittelbar vor der Montage entfernen.
Die Verpackung aufbewahren, denn diese bietet bei einem Transport einen optimalen Schutz (z. B. wechselnder Einbauort, Reparatursendung oder Rekalibrierung).

<i>Massenscheiben werden im Karton geliefert und nicht in ihren jeweiligen Holzkoffern, falls bestellt. Die Holzkoffer sind nicht zur Nutzung als Transportkisten geeignet.</i>

5.3 Lagerung
Zulässige Bedingungen am Lagerort:
- Lagertemperatur: -10 ... +50 °C
- Feuchtigkeit: 35 ... 85 % relative Feuchte für Gerätebasis und Massensatz
 35 ... 65 % relative Feuchte für Kolbenzylindereinheit (keine Betauung)

Folgende Einflüsse vermeiden:
- Direktes Sonnenlicht oder Nähe zu heißen Gegenständen
- Mechanische Vibration, mechanischer Schock (hartes Aufstellen)
- Ruß, Dampf, Staub und korrosive Gase
- Explosionsgefährdete Umgebung, entzündliche Atmosphären
- Korrosiven Flüssigkeiten

Das Kolbenmanometer Typ LR-CoI LDW-HK in der Originalverpackung an einem Ort lagern, der die oben gelisteten Bedingungen erfüllt. Wenn die Originalverpackung nicht vorhanden ist, dann das Gerät wie folgt verpacken und lagern:
1. Das Gerät in eine antistatische Plastikfolie einhüllen.
2. Das Gerät mit dem Dämmmaterial in der Verpackung platzieren.
3. Bei längerer Einlagerung (mehr als 30 Tage) einen Beutel mit Trocknungsmittel in die Verpackung beilegen.
6. Inbetriebnahme, Betrieb

6.1 Auspacken des Kolbenmanometers
Öffnen Sie die Verpackung der Druckwaage baldmöglichst nach der Lieferung und prüfen Sie, ob Sie alle in der Packliste (siehe Kapitel 4.2 „Lieferumfang“) angegebenen Teile erhalten haben. Prüfen Sie die Teile beim Auspacken auf Transportschäden. Sollten Teile fehlen, wenden Sie sich sofort an Ihren Lieferanten.

6.2 Umgebungsbedingungen
Wird das Kolbenmanometer nicht in einem temperierten Labor aufgestellt, sollte der Aufstellort so weit als möglich folgenden Kriterien entsprechen:
- Räumlichkeit mit konstanter Temperatur ohne Zugluft und Hitze- oder Kältequellen
- Räumlichkeit ohne Lärm und Vibrationen oder häufig benutzter Durchgangsweg
- Saubere, trockene Räumlichkeiten, frei von korrosiven Flüssigkeiten oder Dämpfen

Ein starker, stabiler und ebener Tisch oder Werkbank mit entsprechender Tragfähigkeit und dem benötigten Freiraum für die Bedienung des Systems ist erforderlich.

6.3 Aufstellen des Basements
Befestigen des Basements an der Werkbank
Das Basement sollte auf eine feste, ebene Fläche (Tisch oder Werkbank) mit etwa 0,9 m Höhe montiert werden. Die Mittellinie der vorderen Stellfüße der Einheit sollten ca. 40 mm von der Vorderkante der Werkbank entfernt sein, um einen entsprechenden Freiraum für das Handrad sicherzustellen.

1. Die Position der Stellfüße der Einheit auf der Oberfläche der Werkbank markieren.
2. Eine ebene Platte auf den jeweiligen Mittelpunkt der Stellfüße der Einheit auflegen und die Platte an die Werkbank festschrauben, um die Steifigkeit des Kolbenmanometers sicherzustellen. 4 dieser „ebenen Platten“ sind in der Tasche.
3. Das Basement auf die Werkbank stellen und darauf achten, dass die Stellfüße auf den ebenen Platten stehen und die Welle des Handrads über die Vorderkante der Werkbank hinausragt.
4. Die vier Handradgriffe in das Drehkreuz schrauben.
6. Inbetriebnahme, Betrieb

6.4 Zusammenbau der Kolbeneinheit
Die Kolbeneinheit des **LR-Cal LDW-HK** hat eine eigene Transportbox, in der die Kolbeneinheit aufbewahrt wird, wenn sie nicht für den Betrieb verwendet wird oder wenn sie zur Rekalibrierung zurückgesendet werden muss. Die folgenden Details zeigen auf, wie der Kolben des Grundkörpers zusammengebaut bzw. zerlegt werden soll.

1. Gerändelte Haltekappe aus dem Grundkörper lösen.
2. Den Kolbenkopf auf eine ebene Fläche platzieren, dem Kolben vertikal zugewandt.
3. Die gerändelte Haltekappe mittels der exzentrischen Bohrung auf den Kolben montieren.

WARNUNG!
Keine Querkraft anwenden. Übermäßige Kraft ist nicht erforderlich.

6. Die gerändelte Haltekappe am Grundkörper festziehen.
6. Inbetriebnahme, Betrieb

6.5 Zusammenbau des Kolbenmanometers

3. Eine passende Verbindung zum Prüfanschluss unter Verwendung einer Dichtung herstellen und einen Prüling (für die Installation ein bekanntes Messinstrument verwenden) ebenfalls unter Verwendung einer Dichtung anschrauben.

Bei Bedarf eine Unterlegscheibe aus Kupfer oder Leder als Ersatz für den Dichtring verwenden. Die lose Mutter am Basement des Kolbenmanometers ermöglicht das freie Positionieren des Messgeräts; für rückseitige Geräte einen 90°-Winkeladapter (Bestell-Nr. CPB5000-WA90) in die freilaufende Überwurfmutter-Verbindung schrauben.

6.5.1 Befüllen des Basements mit Flüssigkeit

1. Die Verschlusschraube vom Vorratsbehälter und den Stopfen entfernen (während des Betriebs Stopfen nicht aufsetzen).

2. Die Ventile A und B öffnen.

3. Das Handrad der Spindelpumpe komplett nach rechts drehen.

5. Das Handrad der Spindelpumpe komplett nach links drehen.

6. Vorratsbehälter auffüllen, falls nötig.

Schutzbrille tragen!
Schutz der Augen vor umherliegenden Teilen und Flüssigkeitsspritzen.

6.5.2 Prüfung nach dem Zusammenbau

1. Eine Testkalibrierung eines bekannten Prülings (siehe Kapitel 6.6 "Vorgehensweise") durchführen, um sicher zu gehen, dass die Einheit korrekt funktioniert.

Anleitung Modell LR-Cal LDW-HK Druckwaage / Kolbenmanometer
6. Inbetriebnahme, Betrieb

2. Druck entspannen und Prüling entfernen.

Um das Messgerät vom System zu lösen, sind nur für den oberen Bereich des Druckanschlusses und am Grundkörper des Messgerätes, Schraubenschlüssel der geeigneten Größe zu verwenden. Sicherstellen, dass der untere Teil des Druckanschlusses nicht gedreht wird, da dieser sich vom Basement lösen könnte.

3. Das System ist nun einsatzbereit.

VORSICHT!
Falls die Füllmenge zu groß ist und es die Verwendung einer zusätzlichen Pumpe und den Anschluss eines weiteren Vorratsbehälters an den Typ LR-Cal LDW-HK erfordert, muss gewährleistet sein, dass das Ventil B offen und das Ventil A immer geschlossen bleibt, sonst kann ein hoher Druck am Niederdruckkolben der Spindelpumpe aufgebaut werden und Schaden verursachen. Um sicherzustellen, dass dies nicht passieren kann, kann das System mit einem Entlastungsventil geliefert werden, das bei einem eingestellten Druckwert öffnet, falls die Ventile falsch betätigt werden.

Alternativ können wir ein modifiziertes System und eine Handpumpe für diese Anwendung liefern. Bei weiteren Fragen zu beiden Punkten, wenden Sie sich bitte an DRUCK & TEMPERATUR Leitenberger GmbH.

Bei der Prüfung von Prüflingen mit großem Volumen ist es möglich, dass die Kapazität der Spindelpumpe (65 cm³) nicht ausreicht, um den gewünschten Druck zu erreichen. In diesem Fall den Prüfling vor dem Anschluss an das System so weit wie möglich mit Flüssigkeit füllen, um das benötigte Verdrängungsvolumen zu reduzieren.

Schmutzige oder chemisch verunreinigte Prüflinge sollten vor der Montage gereinigt werden, da sie das System verschmutzen können.

Schutzbrille tragen!
Schutz der Augen vor umherliegenden Teilen und Flüssigkeitsspritzen.

6.6 Vorgehensweise

1. Das zu testende Gerät (Prüfling) an den Prüfanschluss montieren.

Anleitung Modell LR-Cal LDW-HK Druckwaage / Kolbenmanometer
6. Inbetriebnahme, Betrieb

 Zur Kalibrierung von Drücken, die kleiner sind als der Druckwert des Ausgleichsgewichts der Glocke, wird empfohlen, auf den Kolben stapelbare Scheibengewichte für die Kalibrierung zu verwenden. Soll die gewünschte Druckkalibrierung in bar erfolgen, ist es wichtig, das kleine Ausgleichsgewicht zu platzen, bevor weitere auf den Kolben stapelbare Scheibengewichte aufgesetzt werden.

 Ist die Glocke montiert, sollte zuerst das große Scheiben-Ausgleichsgewicht aufgelegt werden. Das kleine Ausgleichsgewicht sollte nicht verwendet werden, wenn die Glocke montiert ist.

6.6.1 Druckbeaufschlagung

Bei Drücken von bis zu 140 bar (2.000 psi)

1. Ventil B schließen (Ventil A bleibt offen).
2. Das Handrad der Spindelpumpe im Uhrzeigersinn drehen. So wird ein Druck von bis zu ca. 140 bar oder 2.000 psi erzeugt, wenn das Handrad eingedreht wird. Lässt sich das Handrad schwer drehen, bedeutet dies, dass der Grenzwert für diesen Bereich erreicht wurde.

Bei Drücken über 140 bar (2.000 psi)

2. Das Handrad der Spindelpumpe im Uhrzeigersinn drehen, bis es sich nicht mehr drehen lässt.

6. **6.6.2 Während der Kalibrierung**

Es ist wichtig, dass die Gewichte beim Ablesen der Werte frei drehen. Der Kolben kommt dann zum Stehen, wenn der Druck zu hoch oder zu niedrig ist. Bei den niedrigen Drücken drehen die Gewichte nur einige Sekunden, außer es wird ein sehr dünnes Öl verwendet; aber falls das Gewicht vor dem Ablesen von Hand gedreht wird und der Schwebezustand offensichtlich erreicht ist, ist ein genaues Ablesen gegeben.

VORSICHT!

Beim Drehen der Gewichte ist immer Vorsicht geboten. Es besteht die Gefahr, dass die Kolbeneinheit beschädigt oder der Bediener verletzt wird.

Die Drehbewegung soll daher per Hand gestoppt werden. Erst dann können neue Massen für weitere Prüfpunkte aufgelegt werden oder der Druck vollständig entlastet werden.

6. **6.6.3 Bezugswerte**

Bei der Prüfung von Messgeräten mit Flüssigkeit, ist es gelegentlich notwendig, die Bezugshöhen der Flüssigkeit zu berücksichtigen, da eine Höhendifferenz von 10 mm etwa 1 mbar entspricht. Die Bezugshöhen der Kolbeneinheiten Typ LR-Cal LDW-HK sind

Die Zeichnung zeigt den Effekt, der ausgeglichen werden muss, wenn eine hochgenaue Kalibrierung gewünscht ist. Mit der folgenden Formel kann die Kopfkorrektur berechnet werden.

\[
\Delta P \text{ bedingt durch Druckeffekte} = \sigma \cdot H \cdot g
\]

Wenn
\[
\sigma = \text{Dichte (kg/m}^2\text{)}
\]
\[
H = \text{Höhe (in Meter)}
\]
\[
g = \text{Fallbeschleunigung (m/s}^2\text{)}
\]

Dichte des Öls VG 22 = 885 kg/cm²

6.7 Abschlussarbeiten

2. Das Ventil A oder B zur Entlastung des Restdrucks öffnen.
6. Inbetriebnahme, Betrieb

Das System ist nun bereit für eine neue Prüfung und ist komplett druckentlastet.

6.8 Korrekturberechnungen mit MS-Excel Arbeitsblatt (kostenloser Download)
Mit dieser MS-Excel Datei kann der Benutzer sein System und die lokalen Bedingungen definieren (Fallbeschleunigung, Temperatur). Wenn der Solldruck eingegeben wird, wird der tatsächlich erreichte Druck angezeigt.

Dieser Ist-Druck wird dann zur Standardgenauigkeit des Kolbenmanometers. Um die erhöhte Standardgenauigkeit zu erreichen, muss der Benutzer den Korrekturfaktor eingeben, der auf dem mit der Kolbeneinheit gelieferten Zertifikat zur erhöhten Genauigkeit angegeben ist.

Standardbedingungen werden bei Leitenberger (LR-Cal) eingegeben, aber wenn der Benutzer diese ändert, werden seine Werte zu Standardwerten (es ist nicht nötig, diese Werte wiederholt einzugeben).

Link für kostenlosen Download: http://www.lr-cal.net/dwt-corrections.zip

6.9 Kolbentemperaturmessung
Für viele Zwecke, wie z. B. die Kalibrierung der meisten Zeigermessgeräte und Messumformer, ist keine genaue Kenntnis der Kolbentemperatur notwendig. Um jedoch die größtmögliche Genauigkeit der Druckwaage zu erreichen, ist es wichtig, die Kolbentemperatur möglichst nahe am Kolben zu kennen.

In Labors, wo die Raumtemperatur geregelt wird, ist es sehr wahrscheinlich, dass die Temperatur des Kolbens nicht um mehr als 0,5 °C von der Umgebungstemperatur abweicht. Wenn bei ungeregelten Temperaturen gearbeitet wird, muss jedoch die Temperatur der Kolbeneinheit gemessen werden.

Eine mögliche Art und Weise, dies zu tun, ist die Verwendung eines scheibenförmigen, thermistorartigen Sensorelements, das auf die Außenseite der Kolbeneinheit
6. Inbetriebnahme, Betrieb

geklebt wird. Dieses Sensorelement sollte von der Umgebungstemperatur durch eine Abdeckung aus einem dünnen Streifen aus Polystyrol oder einem anderen Isoliermaterial isoliert und dann auf die Kolbeneinheit geklebt werden.

6.10 Reinigung der Messgeräte

Dieser Reinigungs-/Entfettungsprozess ist nur geeignet für Druckmessgeräte mit Bourdonfedern aus Phosphor, Bronze, Beryllium, Kupfer, Monel oder CrNi-Stahl in der Form eines "C".

Es ist nicht ratsam, Druckmessgeräte mit Bourdonfedern aus Stahl zu entfetten, da bereits eine winzige Menge Rost Messungenauigkeiten hervorruft und zu einem vorzeitigen Ausfall der Feder führen kann.

Schutzbrille tragen!
Schutz der Augen vor umherliegenden Teilen und Flüssigkeitsspritzern.

Diese Reinigungsmethode ist nicht geeignet für Druckmessgeräte, die mit gewundenen Bourdonfedern bestückt sind und auch nicht für Messgeräte, die mit Sauerstoff arbeiten, da die Funktion ohne Öl nicht sichergestellt ist. Wenden Sie sich bitte an DRUCK & TEMPERATUR Leitenberger GmbH.

Ausrüstung
Diese besteht aus einer Spritze und einer speziellen Nadel, die um 90° gebogen ist.

Anweisungen:
1. Die Spritze mit Lösungsmittel befüllen (geeigneter Kaltreiniger zum Entfetten).
2. Das Messgerät mit dem Anschluss nach oben zeigend halten, die Nadel in den Anschluss schieben und diese vorsichtig in das Loch führen, das zur Rohrfeder führt (am Gewindeanschlussstutzen).
3. Das Lösungsmittel injizieren. Idealerweise sollte das Bourdon-Rohr halb voll sein.
4. Das Messgerät hin und her schütteln, um das Lösungsmittel zu verteilen.
6. Inbetriebnahme, Betrieb / 7. Wartung, Reinigung und ...

5. Das Lösungsmittel mit der Spritze wieder herausziehen und das Messgerät dabei schräg halten.

6. Prüfen, ob das Lösungsmittel schwebekörperfrei und rein ist. Um sicherzugehen, dass alles Öl entfernt wurde, den Reinigungsprozess wiederholen, bis das Lösungsmittel klar bleibt.

7. Wartung, Reinigung und Rekalibrierung

7.1 Periodische Wartung

7. Wartung, Reinigung und Rekalibrierung
7. Wartung, Reinigung und Rekalibrierung

7.2 Instandhaltung

7.2.1 Allgemein
Dieser Abschnitt enthält Einzelheiten zum Zerlegen der Einheit und zum Ersetzen der aufgelisteten Teile (siehe Kapitel 10. „Zubehör“). Die Kennzeichnungsnummern der Bauteile in Klammern beziehen sich auf die nachfolgende Skizze.

7.2.2 Deckel abnehmen
1. So viel Öl wie möglich aus der Druckwaage ablassen und dabei mit einem in den Prüfanschluss eingeschraubten Ablauf die Spindelpumpe vollständig nach rechts drehen.
2. Freilaufende Überwurfmutter und Kolbenzylindereinheit lösen.
3. Ölwannen vorsichtig anheben und entfernen.
4. Stellschraube mit einem Sechskantschlüssel 3 mm lockern und beide Handräder entfernen.
5. Die vier Feststellschrauben vom Deckel entfernen und Deckel abnehmen.

7.2.3 Behälterdichtungen
2. O-Ring (6) aus der Nut nehmen und die Seloc-Dichtung (7) von den Schrauben entfernen.

7.2.4 Ventildichtungen
1. Stopfbuchsenmutter lösen.
2. Ventilspindel lösen und Dichtung entfernen.
4. O-Ring (9) unter Verwendung eines Hakenwerkzeugs aus der Bohrung der Stopfbuchsenmutter entfernen. O-Ring und Dichtung (10) ersetzen.
7. Wartung, Reinigung und Rekalibrierung

7.2.5 Spindelpumpe

1. Die sechs Innensechskantschrauben, die die Aufnahmeplatte des Drehkreuzes sichern, mit dem Sechskantschlüssel 4 mm lösen. (Diese befinden sich in der Nut im hinteren Teil des Aluminium-Drehkreuzes)

2. Durch vorsichtiges Herausziehen des Drehkreuzes kann nun die komplette Kolbenbaugruppe aus dem Zylinderrohr entfernt werden (dabei einen Behälter neben dem Zylinderrohr aufstellen, um Flüssigkeiten aufzufangen).

5. An diesem Punkt sollte die Drehkreuz-Baugruppe auf ein zu großes Spiel überprüft werden, was ein Anzeichen für einen Verschleiß des Lagers oder der Schraubspin del und der Mutter ist. Falls Anzeichen von Verschleiß gefunden werden, muss die Drehkreuz-Baugruppe demontiert werden.

7. Der Zusammenbau erfolgt in umgekehrter Reihenfolge der beschriebenen Vorgehensweise.

Beim Zusammenbau muss darauf geachtet werden, dass der Kolben korrekt ausgerichtet wird, um ein Verbiegen oder eine Beschädigung der Dichtung zu vermeiden. Keine übermäßige Kraft aufwenden.

Die Innensechskantschrauben sind nicht gleichmäßig um die Flansche angeordnet, prüfen Sie daher die Ausrichtung der Schraubenlöcher bevor Sie die Schrauben einführen.

7.2.6 Drehkreuz-Baugruppe

2. Handgriffe vom Drehkreuz lösen.

3. Federbolzen (1), der sich unten an einer Gewindebohrung für die Handgriffe befindet mit einem Stempel mit 6 mm Durchmesser aus dem Drehkreuz herausklopfen. Drehkreuz herausziehen.

Anleitung Modell LR-Cal LDW-HK Druckwaage / Kolbenmanometer
7. Wartung, Reinigung und Rekalibrierung

5. Falls die Flanschbuchse (2) erneuert werden muss, muss sie aus der Aufnahmeplatte herausgepresst werden und die neue Buchse muss eingepresst werden.

6. Das Axiallager (3) muss als komplettes Bauteil ersetzt werden.

9. Teile zusammenspannen um ein Spiel zu vermeiden und Federbolzen montieren. Bei Verwendung einer neuen Spindel, ein Loch von 6,3 mm Durchmesser bohren um den Federbolzen (1) zu montieren.

7.2.7 Kolbenzylindersystem

Da die Kolbenzylindereinheit einen großen Teil des Kolbenmanometers ausmacht, sollte diese immer vorsichtig behandelt und sauber gehalten werden.

Die Kolbenzylindereinheit ist für hohe Genauigkeit ausgerichtet und es ist nicht empfehlenswert, sie zu demonstrieren. Sollte es nötig sein, sie zu reinigen, muss die Kolben- und Zylinderbohrung sofort geölt werden, um die Oberfläche zu schützen.

Sollte die Einheit beschädigt sein, sollte sie komplett zum Austausch oder zur Reparatur zurückgeschickt werden. Teile verschiedener Einheiten sind nicht untereinander austauschbar, da sie als Ganzes gewogen und ausgewertet werden müssen.

Dies beinhaltet das Zerlegen der Einheit, um einfache Reparaturen auszuführen und Teile auszutauschen.
7. Wartung, Reinigung und Rekalibrierung

7.3 Reinigung
Reinigung der Einheit und Prüfen der Füllstände

Verwendung mit Öl

Sicherstellen, dass der Vorratsbehälter genügend Flüssigkeit enthält, um die erforderlichen Kalibrieraufgaben auszuführen. Vorratsbehälter mit derselben Flüssigkeit auffüllen, die bereits verwendet wird. Keine andere Art der Flüssigkeit oder eine andere Marke verwenden.

Wird das Öl im Kolbenmanometer schmutzig, Spindelpumpe verwenden, um sauberes Öl durch das Gerät zu spülen; dafür einen Ablauf in den Prüfanschluss schrauben. (Es kann ein Winkelanschlussstück verwendet werden). Vor dem Start sollte die Spindelpumpe komplett im Uhrzeigersinn eingedreht werden.

Schutzbrille tragen!
Schutz der Augen vor umherliegenden Teilen und Flüssigkeitsspritzen.

Hinweise zur Rücksendung des Gerätes siehe Kapitel 9.1 „Rücksendung“.

7.4 Rekalibrierung
Werks- oder DKD-/DAkkS-Kalibrierschein:

7.4.1 Überholung und Re-Zertiﬁzierung von Kolbenmanometern, Wartung der Genauigkeit
7. Wartung, Reinigung und Rekalibrierung

Wasser oder Chemikalien aus Messgeräten oder von durch Schmutzstoffe verursachter Korrosion stammt.

Die Gewichte sind aus austenitischem CrNi-Stahl gefertigt, der sehr stabil ist. Sie sollten regelmäßig ohne Scheuerwirkung gereinigt werden, um Fremdstoffe zu entfernen.

7.4.2 Notwendigkeit der Überholung und Re-Zertifizierung
Wir empfehlen, das Kolbenmanometer zur Überholung und Re-Zertifizierung jederzeit in den folgenden Fällen an uns zurückzuschicken:

1. Der Kolben dreht nicht frei.
2. Die Sinkrate des Kolbens ist offensichtlich höher als beim Neuteil, was die Verwendung des Kolbenmanometers schwierig macht.
3. Die Gewichte sind beschädigt.
4. Das Kolbenmanometer kann aufgrund von Abnutzung oder Beschädigung der Pumpe oder der Ventile nicht korrekt arbeiten und dies kann vom Benutzer nicht behoben werden.

Diese Druckwaage kann für die Kalibrierung von Messgeräten mit einer erwarteten Genauigkeit von 1,0%, 0,5% oder 0,25 % verwendet werden. Solche Kolbenmanometer müssen nicht oft zur Überholung und Re-Zertifizierung zurückgeschickt werden; wenn sie zufriedenstellend arbeiten, sind sie über Jahre hinweg zuverlässig. Unter diesen Umständen ist eine Überholung alle fünf Jahre angemessen.

Die tatsächlichen Intervalle zwischen den Überholungen und Re-Zertifizierungen sollten vom Benutzer hinsichtlich der oben genannten Anmerkungen festgelegt werden und müssen die Anforderungen der Kontrollbehörde, die dafür zuständig ist, berücksichtigen.

7.4.3 Identifizierung der Gewichte
Alle Gewichtssätze, die mit einem Kolbenmanometer geliefert werden, sind einer Gewichtssatznummer zugeordnet und entsprechend markiert. Falls sichergestellt
7. Wartung, Reinigung und Rekalibrierung

7.4.4 Überholung und Re-Zertifizierung

Für eine bestmöglich Überholung, sollte die Druckwaage als gesamte Einheit, zusammen mit dem Basement, der Kolbenzylindereinheit und allen Gewichten, zurückgeschickt werden. Das Basement kann auch selbst gewartet werden. Die Kolbenzylindereinheit mit den Gewichten muss jedoch zur Überholung eingeschickt werden. In diesem Fall bezieht sich das Zertifikat, das nach der Überholung erstellt wird, nur auf die Kolbenzylindereinheit und die Gewichtssatznummern aber nicht auf das Basement, dem sie ursprünglich zugeordnet waren.

Die Basements der Kolbenmanometer werden zerlegt, die Verrohrung gereinigt, die Dichtungen werden ausgetauscht und alle abgenutzten Komponenten werden, wo gewünscht, ersetzt; das Kolbenmanometer wird wieder zusammengebaut und getestet.

Die Gewichte werden geprüft und, falls möglich, auf das ursprüngliche Maß gebracht. Fehlen ein oder zwei Gewichte oder ist eine Reparatur nicht mehr wirtschaftlich, werden sie ersetzt. Fehlen mehr als zwei Gewichte oder ist eine Reparatur nicht mehr wirtschaftlich, wird der Kunde um eine Entscheidung gebeten.

Für jedes überholte Kolbenmanometer wird ein neues Genauigkeitszertifikat erstellt. Sollte es eine leichte Änderung der Kolbenquerschnittsfläche gegeben haben, wird dies, falls auf der Bestellung nicht anders angegeben, im Zertifikat vermerkt; die Genauigkeit wird sich nicht um mehr als 0,03 % verändern. Das Genauigkeitszertifikat des überholten Kolbenmanometers kann zum Beispiel aufzeigen, dass die Abweichung nicht mehr als 0,05 % beträgt, während das Originalzertifikat bestätigt, dass die Abweichung 0,02 % nicht übersteigt.

Wir können für ein überholtes System ein Werks- oder DKD-/DAkkS-Zertifikat für die Kalibrierung erstellen. Einzelheiten können auf Anfrage geliefert werden.
8. Störungen

<table>
<thead>
<tr>
<th>Störungen</th>
<th>Ursachen</th>
<th>Maßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ventil B ist offen.</td>
<td>Ventil B schließen und noch einmal versuchen.</td>
</tr>
<tr>
<td></td>
<td>Zu testendes Gerät hat ein großes Volumen.</td>
<td>Gerät vor dem Test mit Flüssigkeit füllen.</td>
</tr>
<tr>
<td></td>
<td>Fehlende oder beschädigte Dichtungen aufgezeigt durch unerklärbare Leckage.</td>
<td>Dichtungen am System prüfen und sicherstellen, dass sie korrekt montiert und unbeschädigt sind. Ersetzen, falls nötig.</td>
</tr>
<tr>
<td></td>
<td>Wenn die Ursache nicht gefunden werden kann.</td>
<td>Kolbenmanometer an LR-Cal Leitenberger zur Untersuchung zurückschicken.</td>
</tr>
<tr>
<td>System liefert Druck aber der Druck fällt auf Null ab.</td>
<td>Vorgehensweise nicht korrekt.</td>
<td>Sicherstellen, dass die korrekte Vorgehensweise angewandt wird (siehe Kapitel 6.6)</td>
</tr>
<tr>
<td></td>
<td>Fehlende oder beschädigte Dichtungen aufgezeigt durch unerklärbare Leckage.</td>
<td>Dichtungen am System prüfen und sicherstellen, dass sie korrekt montiert und unbeschädigt sind. Ersetzen, falls nötig.</td>
</tr>
<tr>
<td></td>
<td>Wenn die Ursache nicht gefunden werden kann.</td>
<td>Kolbenmanometer an LR-Cal Leitenberger zur Untersuchung zurückschicken.</td>
</tr>
</tbody>
</table>
8. Störungen

<table>
<thead>
<tr>
<th>Störungen</th>
<th>Ursachen</th>
<th>Maßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>System liefert Druck aber der Druck fällt ab, wenn die Ventile A und B betätigt werden.</td>
<td>Vorgehensweise nicht korrekt.</td>
<td>Sicherstellen, dass die korrekte Vorgehensweise angewandt wird (siehe Kapitel 6.6)</td>
</tr>
<tr>
<td>Wenn die Ursache nicht gefunden werden kann.</td>
<td>Kolbenmanometer an LR-Cal Leitenberger zur Untersuchung zurückschicken.</td>
<td></td>
</tr>
<tr>
<td>Wenn die Ursache nicht gefunden werden kann.</td>
<td>Kolbenmanometer an LR-Cal Leitenberger zur Untersuchung zurückschicken.</td>
<td></td>
</tr>
<tr>
<td>Interne Beschädigung</td>
<td>Kolbenmanometer an LR-Cal Leitenberger zur Untersuchung zurückschicken.</td>
<td></td>
</tr>
<tr>
<td>Vorgehensweise nicht korrekt.</td>
<td>Sicherstellen, dass die korrekte Vorgehensweise angewandt wird (siehe Kapitel 6.6)</td>
<td></td>
</tr>
<tr>
<td>Wenn die Ursache nicht gefunden werden kann.</td>
<td>Kolbenmanometer an LR-Cal Leitenberger zur Untersuchung zurückschicken.</td>
<td></td>
</tr>
<tr>
<td>Spindelpumpe des Kolbenmanometers ist schwergängig, sobald das Kolbenmanometer im Bereich unter 140 bar verwendet wird. (2.000 psi)</td>
<td>Interne Beschädigung</td>
<td>Kolbenmanometer an LR-Cal Leitenberger zur Untersuchung zurückschicken.</td>
</tr>
<tr>
<td>Spindelpumpe des Kolbenmanometers ist schwergängig, sobald das Kolbenmanometer im Bereich über 140 bar verwendet wird. (2.000 psi)</td>
<td>Vorgehensweise nicht korrekt.</td>
<td>Sicherstellen, dass die korrekte Vorgehensweise angewandt wird (siehe Kapitel 6.6)</td>
</tr>
<tr>
<td>Wenn die Ursache nicht gefunden werden kann.</td>
<td>Kolbenmanometer an LR-Cal Leitenberger zur Untersuchung zurückschicken.</td>
<td></td>
</tr>
</tbody>
</table>
8. Störungen / 9. Rücksendung und Entsorgung

VORSICHT!

9. Rücksendung und Entsorgung

WARNUNG!
Messstofreste am Kolbenmanometer können zur Gefährdung von Personen, Umwelt und Einrichtung führen. Ausreichende Vorsichtsmaßnahmen ergreifen.

9.1 Rücksendung

WARNUNG!
Beim Versand des Gerätes unbedingt beachten:
Alle an LR-Cal Leitenberger gelieferten Geräte müssen frei von Gefahrstoffen (Säuren, Laugen, Lösungen, etc.) sein.

Zur Rücksendung des Gerätes die Originalverpackung oder eine geeignete Transportverpackung verwenden.

Um Schäden zu vermeiden:
1. Kolbenzylindereinheit in die dafür vorgesehene Transportverpackung legen (siehe Kapitel 6.4 „Zusammenbau der Kolbeneinheit“).
2. Das Gerät in eine antistatische Plastikfolie einhüllen.
4. Wenn möglich einen Beutel mit Trocknungsmittel der Verpackung beifügen.
5. Sendung als Transport eines hochempfindlichen Messgerätes kennzeichnen.

9.2 Entsorgung
Durch falsche Entsorgung können Gefahren für die Umwelt entstehen. Gerätekomponenten und Verpackungsmaterialien entsprechend den landesspezifischen Abfallbehandlungs- und Entsorgungsvorschriften umweltgerecht entsorgen.

10. Zubehör

<table>
<thead>
<tr>
<th>Bezeichnung/Ausführung</th>
<th>Artikel-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feinmassensatz (1 mg bis 50 g), Klasse F1</td>
<td>LDW-FMS-F1</td>
</tr>
<tr>
<td>Feinmassensatz (1 mg bis 50 g), Klasse M1</td>
<td>LDW-FMS-M1</td>
</tr>
<tr>
<td>Set aus 2 Transportkoffern für Massensatz</td>
<td>LDW-HK-KOFFER-MS</td>
</tr>
<tr>
<td>Transportkoffer für LR-Cal LDW-HK Gerätebasement</td>
<td>LDW-HK-KOFFER-BM</td>
</tr>
<tr>
<td>Adapterset „BSP“ für Prülingsanschluss G 1/2 außen auf G 1/8, G 1/4, G 3/8 und G1/2 innen</td>
<td>LDW-ADAPTER-BSP</td>
</tr>
<tr>
<td>Adapterset „NPT“ für Prülingsanschluss G 1/2 außen auf 1/8 NPT, 1/4 NPT, 3/8 NPT und 1/2 NPT innen</td>
<td>LDW-ADAPTER-NPT</td>
</tr>
<tr>
<td>Adapterset „metrisch“ für Prülingsanschluss G 1/2 außen auf M12 x 1,5 und M20 x 1,5 innen</td>
<td>LDW-ADAPTER-M</td>
</tr>
<tr>
<td>Prülingsanschlussstück G 3/4 innen auf G 1/2 innen, freilaufend</td>
<td>LDW-PAS-G12</td>
</tr>
<tr>
<td>Winkelanschlussstück 90°, für Prülinge mit rückseitigem Anschluss</td>
<td>BPB5000-WA90</td>
</tr>
<tr>
<td>Trennvorlage (zur Trennung zweier flüssiger Medien mit Membran), max. 700 bar</td>
<td>LDW-TV-M-0700</td>
</tr>
<tr>
<td>Trennvorlage (zur Trennung zweier flüssiger Medien mit Membran), max. 1.200 bar</td>
<td>LDW-TV-M-1200</td>
</tr>
<tr>
<td>Dichtungssatz für LR-Cal LDW-HK Gerätebasement</td>
<td>LDW-HK-R-SET</td>
</tr>
<tr>
<td>Spezialöl für LR-Cal LDW-Serie bis max. 4.000 bar, 1 Liter</td>
<td>CPB5000-FLUID</td>
</tr>
<tr>
<td>ERSATZTEIL: Werkzeug-Set bestehend aus Gabelschlüssel, BSP-Adapter, Ersatzdichtungen, Zeigerabhebevorrichtung und Zeigeraufschatlagstempel</td>
<td>LDW-HK-W-SET</td>
</tr>
</tbody>
</table>
Anlage: EG-Konformitätserklärung Typ LR-Cal LDW-HK

EG-Konformitätserklärung

Wir erklären in alleiniger Verantwortung, dass die mit CE gekennzeichneten Produkte

Modell: LR-Cal LDW-HK

Beschreibung

Druckwaage / Kolbenmanometer
Kompaktausführung
gemäß gültigem Datenblatt

LDW-HK

die grundlegenden Schutzanforderungen der folgenden Richtlinie erfüllen:

97/23/EG (DGRL)
PS > 1,000 bar; Modul A, druckhaltendes Ausrüstungs teil

Unterzeichnet für und im Namen von

DRUCK & TEMPERATUR Leitenberger GmbH
Kirchentellinsfurt/Germany, 3. Juli 2012

i.V. Gerd Broglie
Unterschrift, autorisiert durch das Unternehmen